Theoretical investigation of some O-nitrosyl carboxylate biologic molecules — A natural bond orbital study

Ruizhou ZHANG , Zhenguo LI , Xiaohong LI , Xianzhou ZHANG

Front. Chem. China ›› 2011, Vol. 6 ›› Issue (2) : 69 -75.

PDF (134KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (2) : 69 -75. DOI: 10.1007/s11458-011-0231-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical investigation of some O-nitrosyl carboxylate biologic molecules — A natural bond orbital study

Author information +
History +
PDF (134KB)

Abstract

Theoretical study of several O-nitrosyl carboxylate compounds have been performed using quantum computational ab initio RHF and density functional B3LYP and B3PW91 methods with 6-31G** basis set. Geometries obtained from DFT calculations were used to perform the natural bond orbital (NBO) analysis. It is noted that weakness in the O3-N2 bond is due to nO1σO3-N2* delocalization and is responsible for the longer O3-N2 bond lengths in O-nitrosyl carboxylate compounds. It is also noted that decreased occupancy of the localized σO3-N2 orbital in the idealized Lewis structure, or increased occupancy of σO3-N2* of the non-Lewis orbital, and their subsequent impact on molecular stability and geometry (bond lengths) are related with the resulting BoldItalic character of the corresponding sulfur natural hybrid orbital (NHO) of σO3-N2 bond orbital. In addition, the charge transfer energy decreases with the increase of the Hammett constants of subsitutent groups.

Keywords

natural bond orbital (NBO) / O-nitrosyl carboxylate compounds / second order delocalization energies / natural hybrid

Cite this article

Download citation ▾
Ruizhou ZHANG, Zhenguo LI, Xiaohong LI, Xianzhou ZHANG. Theoretical investigation of some O-nitrosyl carboxylate biologic molecules — A natural bond orbital study. Front. Chem. China, 2011, 6(2): 69-75 DOI:10.1007/s11458-011-0231-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fukuto, J. M.; Ignarro, L. J., Acc. Chem. Res.1997, 30, 149-152

[2]

Butler, A. R.; Williams, D. L. H., Chem. Soc. Rev.1993, 22, 233

[3]

Gnewuch, C. T.; Sosnovsky, G., Chem. Rev.1997, 97, 829-1014

[4]

Ignarro, L. J., Annu. Rev. Pharmacol. Toxicol.1990, 30, 535-560

[5]

Gil, R.; Casado, J.; Izquierdo, C., Int. J. Chem. Kinet.1994, 26, 1167-1178

[6]

Casado, J.; Castro, A.; Leis, J. R.; Mosquera, M.; Peria, M.; Chem, E. J.Soc., Soc.Perkin Trans.1985, 2, 1859

[7]

Iglesias, E., J. Am. Chem. Soc.1998, 120, 13057-13069

[8]

Ryzhov, V.; Klippenstein, S. J.; Dunbar, R. C.; J. Am. Chem.Soc. 1996, 118, 5462-5468

[9]

Li, X. H.; Zhang, R. Z.; Yang, X. D., J. Mol. Struct. THEOCHEM2007, 817, 43-46

[10]

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., GAUSSIAN 03, Revision B.02, Gaussian, Inc., Pittsburgh, PA, 2003.

[11]

Becke, A. D., J. Chem. Phys.1993, 98, 5648

[12]

Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B1988, 37, 785-789

[13]

Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H., Chem. Phys. Lett.1989, 157, 200-206

[14]

Perdew, J. P.; Wang, Y., Phys. Rev. B1992, 45, 13244-13249

[15]

Perdew, J. P., Phys. Rev. B1986, 33, 8822-8824

[16]

Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F., NBO Version 3.1

[17]

Reed, A. E.; Weinhold, F., J. Chem. Phys.1985, 83, 1736

[18]

Reed, A. E.; Weinstock, R. B.; Weinhold, F., J. Chem. Phys.1985, 83, 735

[19]

Reed, A. E.; Weinhold, F., J. Chem. Phys.1983, 78, 4066

[20]

Foster, J. P.; Weinhold, F., J. Am. Chem. Soc.1980, 102, 7211-7218

[21]

Chocholoušová J.; Vladimir Špirko, V.; Hobza, P., Phys. Chem. Chem. Phys.2004, 6, 37

[22]

Cao, C. Z., Substituent Effects in Organic Chemistry. Beijing: Science Press, 2003

[23]

Reed, A. E.; Curtiss, L. A.; Weinhold, F., Chem. Rev.1988, 88, 899-926

[24]

Li, X. H.; Zhang, R. Z.; Cheng, X. L.; Yang, X. Y., J. Mol. Struct. THEOCHEM2007, 821, 47-52

[25]

Luo, Y. R., Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2003

[26]

Häser, M.; Ahlrichs, R., J. Comput. Chem.1989, 10, 104

[27]

Ahlriches, R.; Barr, M.; Haser, M.; Horn, H.; Komel, C., Chem. Phys. Lett.1989, 162, 65

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (134KB)

732

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/