Theoretical investigation of some O-nitrosyl carboxylate biologic molecules — A natural bond orbital study
Ruizhou ZHANG, Zhenguo LI, Xiaohong LI, Xianzhou ZHANG
Theoretical investigation of some O-nitrosyl carboxylate biologic molecules — A natural bond orbital study
Theoretical study of several O-nitrosyl carboxylate compounds have been performed using quantum computational ab initio RHF and density functional B3LYP and B3PW91 methods with 6-31G** basis set. Geometries obtained from DFT calculations were used to perform the natural bond orbital (NBO) analysis. It is noted that weakness in the O3-N2 bond is due to delocalization and is responsible for the longer O3-N2 bond lengths in O-nitrosyl carboxylate compounds. It is also noted that decreased occupancy of the localized orbital in the idealized Lewis structure, or increased occupancy of of the non-Lewis orbital, and their subsequent impact on molecular stability and geometry (bond lengths) are related with the resulting BoldItalic character of the corresponding sulfur natural hybrid orbital (NHO) of bond orbital. In addition, the charge transfer energy decreases with the increase of the Hammett constants of subsitutent groups.
natural bond orbital (NBO) / O-nitrosyl carboxylate compounds / second order delocalization energies / natural hybrid
[1] |
Fukuto, J. M.; Ignarro, L. J., Acc. Chem. Res.1997, 30, 149-152
CrossRef
Google scholar
|
[2] |
Butler, A. R.; Williams, D. L. H., Chem. Soc. Rev.1993, 22, 233
CrossRef
Google scholar
|
[3] |
Gnewuch, C. T.; Sosnovsky, G., Chem. Rev.1997, 97, 829-1014
CrossRef
Pubmed
Google scholar
|
[4] |
Ignarro, L. J., Annu. Rev. Pharmacol. Toxicol.1990, 30, 535-560
CrossRef
Pubmed
Google scholar
|
[5] |
Gil, R.; Casado, J.; Izquierdo, C., Int. J. Chem. Kinet.1994, 26, 1167-1178
CrossRef
Google scholar
|
[6] |
Casado, J.; Castro, A.; Leis, J. R.; Mosquera, M.; Peria, M.; Chem, E. J.Soc., Soc.Perkin Trans.1985, 2, 1859
CrossRef
Google scholar
|
[7] |
Iglesias, E., J. Am. Chem. Soc.1998, 120, 13057-13069
CrossRef
Google scholar
|
[8] |
Ryzhov, V.; Klippenstein, S. J.; Dunbar, R. C.; J. Am. Chem.Soc. 1996, 118, 5462-5468
CrossRef
Google scholar
|
[9] |
Li, X. H.; Zhang, R. Z.; Yang, X. D., J. Mol. Struct. THEOCHEM2007, 817, 43-46
CrossRef
Google scholar
|
[10] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., GAUSSIAN 03, Revision B.02, Gaussian, Inc., Pittsburgh, PA, 2003.
|
[11] |
Becke, A. D., J. Chem. Phys.1993, 98, 5648
CrossRef
Google scholar
|
[12] |
Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B1988, 37, 785-789
CrossRef
Google scholar
|
[13] |
Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H., Chem. Phys. Lett.1989, 157, 200-206
CrossRef
Google scholar
|
[14] |
Perdew, J. P.; Wang, Y., Phys. Rev. B1992, 45, 13244-13249
CrossRef
Google scholar
|
[15] |
Perdew, J. P., Phys. Rev. B1986, 33, 8822-8824
CrossRef
Google scholar
|
[16] |
Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F., NBO Version 3.1
|
[17] |
Reed, A. E.; Weinhold, F., J. Chem. Phys.1985, 83, 1736
CrossRef
Google scholar
|
[18] |
Reed, A. E.; Weinstock, R. B.; Weinhold, F., J. Chem. Phys.1985, 83, 735
CrossRef
Google scholar
|
[19] |
Reed, A. E.; Weinhold, F., J. Chem. Phys.1983, 78, 4066
CrossRef
Google scholar
|
[20] |
Foster, J. P.; Weinhold, F., J. Am. Chem. Soc.1980, 102, 7211-7218
CrossRef
Google scholar
|
[21] |
Chocholoušová, J.; Vladimir Špirko, V.; Hobza, P., Phys. Chem. Chem. Phys.2004, 6, 37
CrossRef
Google scholar
|
[22] |
Cao, C. Z., Substituent Effects in Organic Chemistry. Beijing: Science Press, 2003
|
[23] |
Reed, A. E.; Curtiss, L. A.; Weinhold, F., Chem. Rev.1988, 88, 899-926
CrossRef
Google scholar
|
[24] |
Li, X. H.; Zhang, R. Z.; Cheng, X. L.; Yang, X. Y., J. Mol. Struct. THEOCHEM2007, 821, 47-52
CrossRef
Google scholar
|
[25] |
Luo, Y. R., Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2003
|
[26] |
Häser, M.; Ahlrichs, R., J. Comput. Chem.1989, 10, 104
CrossRef
Google scholar
|
[27] |
Ahlriches, R.; Barr, M.; Haser, M.; Horn, H.; Komel, C., Chem. Phys. Lett.1989, 162, 65
|
/
〈 | 〉 |