Research progress on mid-IR nonlinear optical crystals with high laser damage threshold in China

Tianxiang ZHU, Xingguo CHEN, Jingui QIN

PDF(551 KB)
PDF(551 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (1) : 1-8. DOI: 10.1007/s11458-011-0224-y
FEATURE ARTICLE
FEATURE ARTICLE

Research progress on mid-IR nonlinear optical crystals with high laser damage threshold in China

Author information +
History +

Abstract

Nonlinear optical (NLO) crystals have been playing an increasingly important role in laser science and technology. The NLO crystals used in the middle infrared (mid-IR) region, compared with the NLO crystals in the other wavelength regions, are still not good enough for the application of high-energy laser. The main defect is that their laser damage thresholds (LDT) are low. Chinese scientists have made a lot of important contributions to the UV and visible NLO crystals. In the last decade, they also did a lot of work on the mid-IR NLO materials. The main purpose of these researches is to increase the LDT and simultaneously balance the other properties. This paper presents a brief summary of their research progress in this topic on three types of materials: chalcogenides, oxides, and halides. The emphasis is put on the design strategy and quality control of the crystals.

Keywords

nonlinear optical (NLO) crystals / laser damage threshold (LDT) / mid-IR region / design / crystal growth

Cite this article

Download citation ▾
Tianxiang ZHU, Xingguo CHEN, Jingui QIN. Research progress on mid-IR nonlinear optical crystals with high laser damage threshold in China. Front Chem Chin, 2011, 6(1): 1‒8 https://doi.org/10.1007/s11458-011-0224-y

References

[1]
Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G., Phys. Rev. Lett. 1961, 7, 118-119
CrossRef Google scholar
[2]
Cyranoski, D., Nature2009, 457, 953-955
CrossRef Pubmed Google scholar
[3]
Chen, C.; Lin, Z.; Wang, Z., Appl. Phys. B2005, 80, 1-25
CrossRef Google scholar
[4]
Smith, W. L.; Hickey, J.; Howell, H. B.; Jacobowitz, H.; Hilleary, D. T.; Drummond, A. J., Appl. Opt.1977, 16, 306-318
CrossRef Pubmed Google scholar
[5]
Kato, K., IEEE J. Quantum Electron. 1991, 27, 1137-1140
CrossRef Google scholar
[6]
Boyd, G. D.; Miller, R. C.; Nassau, K.; Bond, W. L.; Savage, A., Appl. Phys. Lett. 1964, 5, 234
CrossRef Google scholar
[7]
Chen, C. T.; Wu, B. C.; Jiang, A.; You, G., Sci. Sin. [B] 1985, 28, 235
[8]
Chen, C. T.; Wu, Y. C.; Jiang, A.; Wu, B. C.; You, G.; Li, R. K.; Lin, S. J., J. Opt. Soc. Am. B 1989, 6, 616
CrossRef Google scholar
[9]
Chen, C.; Xu, Z.; Deng, D.; Zhang, J.; Wong, G. K. L.; Wu, B.; Ye, N.; Tang, D., Appl. Phys. Lett. 1996, 68, 2930
CrossRef Google scholar
[10]
Wang, S.; Tao, X.; Dong, C.; Jiao, Z.; Jiang, M.ChineseJ. Struct. Chem.2007, 26, 1184
[11]
Lin, X.; Zhang, G.; Ye, N., Cryst. Growth Des. 2009, 9, 1186-1189
CrossRef Google scholar
[12]
Phanon, D.; Gautier-Luneau, I., Angew. Chem. Int. Ed. 2007, 46, 8488-8491
CrossRef Google scholar
[13]
Wang, S.; Tao, X.; Dong, C.; Jiao, Z.; Jiang, M., J of Synthetic Cryst 2007, 36, 8
[14]
Zhao, B.; Zhu, S.; Li, Z.; Fu, S.; Yu, F.; Li, Q., J of Synthetic Cryst 1999, 28, 4
[15]
Wang, M.; Yang, C.; Lei, Z.; Xia, S.; Zhu, C.; Sun, L.; Zhou, Y., Cryst. Res. Technol. 2010, 45, 25-30
CrossRef Google scholar
[16]
Zhang, G.; Qin, J.; Liu, T.; Li, Y.; Wu, Y.; Chen, C., Appl. Phys. Lett. 2009, 95, 261104/1
[17]
Liu, T.; Qin, J.; Zhang, G.; Zhu, T.; Niu, F.; Wu, Y.; Chen, C., Appl. Phys. Lett. 2008, 93, 091102/1
[18]
Zhang, G.; Liu, T.; Qin, J.; Fu, P.; Wu, Y.; Chen, C., Cryst. Growth Des. 2008, 8, 2946-2949
CrossRef Google scholar
[19]
Zhang, G.; Liu, T.; Zhu, T.; Qin, J.; Wu, Y.; Chen, C., Opt. Mater. 2008, 31, 110-113
CrossRef Google scholar
[20]
Dmitriev, V. G.; Gurzadyan, G. G.; Nikogosyan, D. N., Handbook of Nonlinear Optical Crystals, Second edition, Springer-Verlag: Berlin, 1995
[21]
Yuan, Z.; Zhu, S.; Zhao, B.; Chen, B.; He, Z.; Yang, S., J of Synthetic Cryst 2009, 38, 1
[22]
Jiang, Y.; Ding, Y. J., Opt. Express2007, 15, 12699-12707
CrossRef Pubmed Google scholar
[23]
Henriksson, M.; Tiihonen, M.; Pasiskevicius, V.; Laurell, F., Appl. Phys. B 2007, 88, 37–41
CrossRef Google scholar
[24]
Zawilski, K. T.; Schunemann, P. G.; Setzler, S. D.; Pollak, T. M., J. Cryst. Growth 2008, 310, 1891-1896
CrossRef Google scholar
[25]
Lin, Y.; Gu, Q.; Liu, H.; Zhang, H.; Ge, W.; Fang, C.; Hu, X.; Wang, J., Function Mater 2006, 37, 864
[26]
Zhao, X.; Zhu, S. F.; Zhao, B. J.; Chen, B. J.; He, Z. Y.; Wang, R. L.; Yang, H. G.; Sun, Y. Q.; Cheng, J., J. Cryst. Growth2008, 311, 190-193
CrossRef Google scholar
[27]
Zhang, G. D.; Tao, X. T.; Wang, S. P.; Liu, G. D.; Shi, Q.; Jiang, M. H., In: Proceedings of the 16th international conference on crystal growth/14th international conference on vapor growth and epitaxy (ICCG-16/ICVGE-14), August 8th, 2010, Beijing, PB131
[28]
Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Krinitsin, P.; Petrov, V.; Zondy, J. J., J. Non-Cryst. Solids 2006, 352, 2439-2443
CrossRef Google scholar
[29]
Isaenko, L.; Vasilyeva, I.; Merkulov, A.; Yelisseyev, A.; Lobanov, S., J. Cryst. Growth 2005, 275, 217-223
CrossRef Google scholar
[30]
Isaenkoa, L.; Yelisseyevb, A.; Lobanova. S,Petrovc, V.; Rotermunde, V. F.; Zondyd, J. J.; Knippelse, G. H., M., Mater. Sci. Semicond. Process. 2001, 4, 664
[31]
Boyd, G. D.; Kasper, H. M.; McFee, J. H., J. Appl. Phys. 1973, 44, 2809
CrossRef Google scholar
[32]
Eisenmann, B.; Jakowski, M.; Schaefer, H., Rev. Chim. Miner 1983, 20, 329
[33]
Chen, X. A.; Zhang, L.; Chang, X. A.; Xue, H. P.; Zang, H. G.; Xiao, W. Q.; Song, X. M.; Yan, H., J. Alloy. Comp. 2007, 428, 54-58
CrossRef Google scholar
[34]
Sun, C. F.; Hu, C. L.; Xu, X.; Ling, J. B.; Hu, T.; Kong, F.; Long, X. F.; Mao, J. G., J. Am. Chem. Soc. 2009, 131, 9486-9487
CrossRef Pubmed Google scholar
[35]
Ra, H. S.; Ok, K. M.; Halasyamani, P. S., J. Am. Chem. Soc. 2003, 125, 7764-7765
CrossRef Pubmed Google scholar
[36]
Zhang, W. G.; Tao, X. T.; Zhang, C. Q.; Gao, Z. L.; Zhang, Y. Z.; Yu, W. T.; Cheng, X. F.; Liu, X. S.; Jiang, M. H., Cryst. Growth Des. 2008, 8, 304-307
CrossRef Google scholar
[37]
Zhang, W. G.; Tao, X. T.; Zhang, C. Q.; Zhang, H. J.; Jiang, M. H., Cryst. Growth Des. 2009, 9, 2633-2636
CrossRef Google scholar
[38]
Zhang, J.; Qin, J., SPIE 1998, 3556, 1
[39]
Rosker, M. J.; Cunningham, P. H.; Ewbank, M. D.; Gunter, P., U.S. 1998, 6 pp
[40]
Gu, Q.; Pan, Q.; Wu, X.; Shi, W.; Fang, C., J. Cryst. Growth 2000, 212, 605-607
CrossRef Google scholar
[41]
Lin, Z. G.; Tang, L. C.; Chou, C. P., Inorg. Chem. 2008, 47, 2362-2367
CrossRef Pubmed Google scholar
[42]
Moller, C. K.; Saarinen, H.; Näsäkkälä, E.; Pouchard, M.; Hagenmuller, P.; Andresen, A. F., Acta Chem. Scand. A 1977, 31, 669-672
CrossRef Google scholar
[43]
Ren, P.; Qin, J.; Chen, C., Inorg. Chem. 2003, 42, 8-10
CrossRef Pubmed Google scholar
[44]
Lin, Z. G.; Tang, L. C.; Chou, C. P., Inorg. Chem.2008, 47, 2362–2367
CrossRef Pubmed Google scholar
[45]
Moller, C. K.; Saarinen, H.; Näsäkkälä, E.; Pouchard, M.; Hagenmuller, P.; Andresen, A. F., Acta Chem. Scand. A 1977, 31, 669–672
CrossRef Google scholar
[46]
Ren, P.; Qin, J.; Chen, C., Inorg. Chem. 2003, 42, 8–10
CrossRef Pubmed Google scholar

Acknowledgements

We gratefully acknowledge the efforts of the formal and current graduate students in our group and our collaborators, whose names are given in the references of this paper. This work was supported by the National Basic Research Project of China (No. 2010CB630701) and the National Natural Science Foundation of China (No. 91022036).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(551 KB)

Accesses

Citations

Detail

Sections
Recommended

/