
Designed synthesis and chiroptical properties of regioregular poly(
Xiangfeng LI, Chusheng LI, Jiang LU, Hui LIANG
Front. Chem. China ›› 2009, Vol. 4 ›› Issue (1) : 93-103.
Designed synthesis and chiroptical properties of regioregular poly(
Two regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene)s bearing (-)-trans-myrtanoxyl side groups with different substitution patterns were designed and synthesized, e.g. Myr-PMPE-1 and Myr-PMPE-2. In Myr-PMPE-1, the side chiral groups are distributed uniformly along the backbone. In Myr-PMPE-2, the distribution of the side chiral groups is alternatively crowded and loose. Both of these two polymers show no CD signal in solutions because of their good solubility. The investigations of chiroptical properties of these two polymers were carried out in the form of spin-coated films. The films were annealed above the glass temperature of the corresponding polymer, and the effects of annealing temperature and time on the properties of the films were investigated by UV-Vis absorption, fluorescence and circular dichroism spectra. The results show that annealing treatment had no significant effect on the properties of Myr-PMPE-1, including UV-Vis absorption, fluorescence and optical activity. The maximum absolute value of dissymmetry factor (|gmax|) was 1.62 × 10-4. On the other hand, annealing treatment significantly affected the properties of Myr-PMPE-2. Without annealing or being annealed below 100°C, Myr-PMPE-2 films show almost no Cotton effect. In contrast, when annealed above 120°C, the absorption and emission of Myr-PMPE-2 films slightly red shifted with increasing annealing temperature and annealing time. Most importantly, the intensity of CD signals increased significantly and the optical activity of Myr-PMPE-2 films markedly increased. After annealing at 140°C for 4 h, the |gmax| of Myr-PMPE-2 films was increased up to 3.07 × 10-3, about one order of magnitude higher than that of Myr-PMPE-1 films.
chiral / conjugated polymer / optical activity / circular dichroism
[1] |
Gao H L, Knobler C M, Kaner R B. A chiral recognition polymer based on polyaniline. Synth Met, 1999, 101: 44-47
CrossRef
Google scholar
|
[2] |
Shinohara K, Aoki T, Kaneko T, Oikawa E. Syntheses and enantioselective recognition of chiralpoly(phenyleneethynylene)s bearing bulky optically active- menthyl groups. Polymer, 2001, 42: 351-355
CrossRef
Google scholar
|
[3] |
Moutet J C, Saintaman E, Tranvan F, Angibeaud P, Utille J P. Poly(glucose- pyrrole) modified electrodes: A novel chiral electrode for enantioselective recognition. Adv Mater, 1992, 4: 511-513
CrossRef
Google scholar
|
[4] |
Bross P A, Schoberl U, Daub J. Carbohydrate-modified conducting polymers synthesis and electrochemistry of sugar-linked azulenes polyazulenes. Adv Mater, 1991, 3: 198-200
CrossRef
Google scholar
|
[5] |
Koeckelberghs G, Sioncke S, Verbiest T, Persoons A, Samyn C. Synthesis and properties of chiral helical chromophore functionalized polybinaphthalenes for second-order nonlinear optical applications. Polymer, 2003, 44: 3785-3794
CrossRef
Google scholar
|
[6] |
Bouman M M, Meijer E W. Stereomutation in optically active regioregular polythiophenes. Adv Mater, 1995, 7: 385-387
CrossRef
Google scholar
|
[7] |
Peeters E, Christiaans M P T, Jassen R A J, Schoo H F M, Dekkers H P J M, Meijer E W. Circularly polarized electroluminescence from a polymer light- emitting diode. J Am Chem Soc, 1997, 119: 9909-9910
CrossRef
Google scholar
|
[8] |
Yan J G, Liang H, Lu J. Studies on the circularly polarized luminescent polymers. Polym Bull, 2002, 4: 26-31 (in Chinese)
|
[9] |
Pu L. The study of chiral conjugated polymers. Acta Polym1997, 48: 116-141
CrossRef
Google scholar
|
[10] |
Ma L, Hu Q S, Vitharanak D, Wu C, Kwan C M.S, Pu L. A new class of chiral conjugated polymers with a propeller-like structure. Macomolecules, 1997, 30: 204-218
CrossRef
Google scholar
|
[11] |
Cheng H, Pu L. Synthesis of chiral conjugated propeller-like polymers using optically active 1,1'-binaphthyl-2,2'-diamine derivatives. Macromol Chem Phys, 1999, 200: 1274-1283
CrossRef
Google scholar
|
[12] |
Liu T J, Zhang K S, Chen Y J, Wang D, Li C J. Chiral conjugated oligomer based on 1,1'-binol with 3,3'-acetylene acetylene spacer. Chinese J Polym Sci, 2001, 19: 521-526
|
[13] |
Cheng Y X, Chen L W, Zou X W, Song J F. Synthesis of chiral conjugated polybinaphthyls by sonogashira reaction. Chinese J Polym Sci, 2006, 24: 273-279
CrossRef
Google scholar
|
[14] |
Cheng Y X, Chen L W, Liu T D. Synthesis of polybinaphthyl incorporating chiral (R)-1,1'-bi-2,2'-naphthol entities wiyh p-divinylbenzene by Pd-catalyzed heck reaction. Chinese J Polym Sci, 2004, 22: 327-331
|
[15] |
Langeveld-Voss M W, Janssen R A J, Christiaans M P T, Meskers S C J, Dekkers H P J M, Meijer E W. Circular dichroism and circular polarization of photoluminescence of highly ordered poly{3,4-di[(S)-2-methylbutoxy]thiophene}. J Am Chem Soc, 1996, 118: 4908-4909
CrossRef
Google scholar
|
[16] |
Andreani F, Angiolini L, Caretta D, Salatelli E. Synthesis and polymerization of 3,3''-di[(S)-(+)-2-methylbutyl]-2,2':5',2''-terthiophene: a new monomer precursor to chiral regioregular poly(thiophene). J Mater Chem, 1999, 8: 1109-1111
CrossRef
Google scholar
|
[17] |
Meskers S S J, Langeveld-Voss B M W, Janssen R A J. Circular polarization of the fluorescence from films of poly(p-phenylene vinylene) and polythiophene with chiral side chains. Adv Mater, 2000, 12: 589-594
CrossRef
Google scholar
|
[18] |
Cornelissen J J L M, Peeters E, Janssen R A J, Meijer E W. Chiroptical properties of a chiral-substituted poly(thienylenevinylene). Acta Polym, 1998, 49: 471-476
CrossRef
Google scholar
|
[19] |
Peeters E, Delmotte A, Janssen R A J, Meijer E W. Chiroptical properties of poly{2, 5-bis[(S)-2-methylbutoxy]-1, 4-phenylene vinylene}. Adv Mater, 1997, 9: 493-496
CrossRef
Google scholar
|
[20] |
Peeters E, Janssen R A J, Meijer E W. Effect of intrachain order on the chiroptical properties of chiral poly(p-phenylene vinylenes). Synth Met, 1999, 102: 1105-1106
CrossRef
Google scholar
|
[21] |
Oda M, Nothofer H G, Lieser G, Scherf U, Meskers S C J, Neher D. Circularly polarized electroluminescence from liquid-crystalline chiral polyfluorenes. Adv Mater, 2000, 12: 362-365
CrossRef
Google scholar
|
[22] |
Oda M, Meskers S C J, Nothofer H G, Scherf U, Neher D. Chiroptical properties of chiral-substituted polyfluorenes. Synth Met, 2000, 111-112: 575-577
CrossRef
Google scholar
|
[23] |
Oda M, Nothofer H G, Scherf U, Sunjic V, Richter D, Regenstein W, Neher D. Chiroptical properties of chiral substituted polyfluorenes. Macromolecules, 2002, 35: 6792-6798
CrossRef
Google scholar
|
[24] |
Lai L M, Lam J W Y, Tang B Z. Synthesis and chiroptical properties of L-valine-containing poly(phenylacetylene)s with (a)chiral pendant terminal groups. J Polym Sci Part A: Polym Chem, 2006, 44: 2117-2129
CrossRef
Google scholar
|
[25] |
Lai L M, Lam J W Y, Tang B Z. Facile synthesis and high optical activity of poly(1-pentyne)s carrying amino-acid pendant groups. J Polym Sci Part A: Polym Chem, 2006, 44: 6190-6201
CrossRef
Google scholar
|
[26] |
Toyoda S, Fujiki M. Experimental evidence for helical conformation of poly(methylphenylsilylene) in solution. Chem Lett, 1999, 28: 699-700
CrossRef
Google scholar
|
[27] |
Koe J R, Fujiki M, Motonaga M, Nakashima H. Cooperative helical order in optically active poly(diarylsilylenes). Macromolecules, 2001, 34: 1082-1089
CrossRef
Google scholar
|
[28] |
Cheng Y J, Liang H, Luh T Y. Chiral silylene-spaced divinylarene copolymers. Macromolecules, 2003, 36: 5912-5914
CrossRef
Google scholar
|
[29] |
Zhang Z B, Motonaga M, Fujiki M, McKenna C E. The first optically active polycarbazoles. Macromolecules, 2003, 36: 6956-6958
CrossRef
Google scholar
|
[30] |
Bouman M M, Havinga E E, Jassen R A J, Meijer E W. Chiroptical properties of regioregular chiral polythiophenes. Mol Cryst Liq Cryst, 1994, 256: 439-448
CrossRef
Google scholar
|
[31] |
Langeveld-Voss B M W, Beljonne D, Shuai Z, Janssen R A J, Meskers S C J, Meijer E W, Brédas J-L. Investigation of exciton coupling in oligothiophenes by circular dichroism spectroscopy. Adv Mater, 1998, 10: 1343-1348
CrossRef
Google scholar
|
[32] |
Curran S A, Ajayan P M, Blau W J, Carroll D L, Coleman J N, Dalton A B, Davey A P, Drury A, McCarthy B, Maier S, Strevens A. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv Mater, 1998, 10: 1091-1093
CrossRef
Google scholar
|
[33] |
Cowart M, Faghih R, Curtis M P, Gfesser G A, Bennani Y L, Black L A, Pan L, Marsh K C, Sullivan J P, Esbenshade T A, Fox G B, Hancock A A. 4-(2-[2-(2(R)-Methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile and related 2-aminoethylbenzofuran H3 receptor antagonists potently enhance cognition and attention. J Med Chem, 2005, 48: 38-55
CrossRef
Google scholar
|
[34] |
Li X, Li C, Yan J, Lu J, Liang H. Synthesis and Chiroptical properties of poly (p-phenylenevinylene-alter-m-phenylenevinylene) bearing (-)-trans-myrtanoxyl groups on the p-phenylene rings. J Polym Sci Part A: Polym Chem, 200846: 3336-3343
CrossRef
Google scholar
|
[35] |
Yan J, Lu J, Liang H. Synthesis and properties of poly(m-phenylenevinylene). Acta Polym Sin, 2004, 3: 434-438 (in Chinese)
|
[36] |
Asada K, Kobayashi T, Naito H. Temperature dependence of photoluminescence in polyfluorene thin films—Huang–Rhys factors of as-coated, annealed and crystallized thin films. Thin Solid Films, 2006, 499: 192-195
CrossRef
Google scholar
|
[37] |
Kong F, Zhang S Y, Yang C Z, Yuan R K. Interchain excited states in annealed poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] films. Mater Lett, 2006, 60: 3887-3890
CrossRef
Google scholar
|
[38] |
Tretiak S, Saxena A, Martin R L, Bishop A R. Interchain electronic excitations in poly(phenylenevinylene) (PPV) aggregates. J Phys Chem B, 2000, 104: 7029-7034
CrossRef
Google scholar
|
[39] |
Dubus S, Marceau V, Leclerc M. Helical conjugated polymers by design. Macromolecules, 2002, 35: 9296-9299
CrossRef
Google scholar
|
/
〈 |
|
〉 |