Designed synthesis and chiroptical properties of regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene) bearing (-)-trans-myrtanoxyl side groups

Xiangfeng LI , Chusheng LI , Jiang LU , Hui LIANG

Front. Chem. China ›› 2009, Vol. 4 ›› Issue (1) : 93 -103.

PDF (287KB)
Front. Chem. China ›› 2009, Vol. 4 ›› Issue (1) : 93 -103. DOI: 10.1007/s11458-009-0018-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Designed synthesis and chiroptical properties of regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene) bearing (-)-trans-myrtanoxyl side groups

Author information +
History +
PDF (287KB)

Abstract

Two regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene)s bearing (-)-trans-myrtanoxyl side groups with different substitution patterns were designed and synthesized, e.g. Myr-PMPE-1 and Myr-PMPE-2. In Myr-PMPE-1, the side chiral groups are distributed uniformly along the backbone. In Myr-PMPE-2, the distribution of the side chiral groups is alternatively crowded and loose. Both of these two polymers show no CD signal in solutions because of their good solubility. The investigations of chiroptical properties of these two polymers were carried out in the form of spin-coated films. The films were annealed above the glass temperature of the corresponding polymer, and the effects of annealing temperature and time on the properties of the films were investigated by UV-Vis absorption, fluorescence and circular dichroism spectra. The results show that annealing treatment had no significant effect on the properties of Myr-PMPE-1, including UV-Vis absorption, fluorescence and optical activity. The maximum absolute value of dissymmetry factor (|gmax|) was 1.62 × 10-4. On the other hand, annealing treatment significantly affected the properties of Myr-PMPE-2. Without annealing or being annealed below 100°C, Myr-PMPE-2 films show almost no Cotton effect. In contrast, when annealed above 120°C, the absorption and emission of Myr-PMPE-2 films slightly red shifted with increasing annealing temperature and annealing time. Most importantly, the intensity of CD signals increased significantly and the optical activity of Myr-PMPE-2 films markedly increased. After annealing at 140°C for 4 h, the |gmax| of Myr-PMPE-2 films was increased up to 3.07 × 10-3, about one order of magnitude higher than that of Myr-PMPE-1 films.

Keywords

chiral / conjugated polymer / optical activity / circular dichroism

Cite this article

Download citation ▾
Xiangfeng LI, Chusheng LI, Jiang LU, Hui LIANG. Designed synthesis and chiroptical properties of regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene) bearing (-)-trans-myrtanoxyl side groups. Front. Chem. China, 2009, 4(1): 93-103 DOI:10.1007/s11458-009-0018-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao H L, Knobler C M, Kaner R B. A chiral recognition polymer based on polyaniline. Synth Met, 1999, 101: 44-47

[2]

Shinohara K, Aoki T, Kaneko T, Oikawa E. Syntheses and enantioselective recognition of chiralpoly(phenyleneethynylene)s bearing bulky optically active- menthyl groups. Polymer, 2001, 42: 351-355

[3]

Moutet J C, Saintaman E, Tranvan F, Angibeaud P, Utille J P. Poly(glucose- pyrrole) modified electrodes: A novel chiral electrode for enantioselective recognition. Adv Mater, 1992, 4: 511-513

[4]

Bross P A, Schoberl U, Daub J. Carbohydrate-modified conducting polymers synthesis and electrochemistry of sugar-linked azulenes polyazulenes. Adv Mater, 1991, 3: 198-200

[5]

Koeckelberghs G, Sioncke S, Verbiest T, Persoons A, Samyn C. Synthesis and properties of chiral helical chromophore functionalized polybinaphthalenes for second-order nonlinear optical applications. Polymer, 2003, 44: 3785-3794

[6]

Bouman M M, Meijer E W. Stereomutation in optically active regioregular polythiophenes. Adv Mater, 1995, 7: 385-387

[7]

Peeters E, Christiaans M P T, Jassen R A J, Schoo H F M, Dekkers H P J M, Meijer E W. Circularly polarized electroluminescence from a polymer light- emitting diode. J Am Chem Soc, 1997, 119: 9909-9910

[8]

Yan J G, Liang H, Lu J. Studies on the circularly polarized luminescent polymers. Polym Bull, 2002, 4: 26-31 (in Chinese)

[9]

Pu L. The study of chiral conjugated polymers. Acta Polym1997, 48: 116-141

[10]

Ma L, Hu Q S, Vitharanak D, Wu C, Kwan C M.S, Pu L. A new class of chiral conjugated polymers with a propeller-like structure. Macomolecules, 1997, 30: 204-218

[11]

Cheng H, Pu L. Synthesis of chiral conjugated propeller-like polymers using optically active 1,1'-binaphthyl-2,2'-diamine derivatives. Macromol Chem Phys, 1999, 200: 1274-1283

[12]

Liu T J, Zhang K S, Chen Y J, Wang D, Li C J. Chiral conjugated oligomer based on 1,1'-binol with 3,3'-acetylene acetylene spacer. Chinese J Polym Sci, 2001, 19: 521-526

[13]

Cheng Y X, Chen L W, Zou X W, Song J F. Synthesis of chiral conjugated polybinaphthyls by sonogashira reaction. Chinese J Polym Sci, 2006, 24: 273-279

[14]

Cheng Y X, Chen L W, Liu T D. Synthesis of polybinaphthyl incorporating chiral (R)-1,1'-bi-2,2'-naphthol entities wiyh p-divinylbenzene by Pd-catalyzed heck reaction. Chinese J Polym Sci, 2004, 22: 327-331

[15]

Langeveld-Voss M W, Janssen R A J, Christiaans M P T, Meskers S C J, Dekkers H P J M, Meijer E W. Circular dichroism and circular polarization of photoluminescence of highly ordered poly{3,4-di[(S)-2-methylbutoxy]thiophene}. J Am Chem Soc, 1996, 118: 4908-4909

[16]

Andreani F, Angiolini L, Caretta D, Salatelli E. Synthesis and polymerization of 3,3''-di[(S)-(+)-2-methylbutyl]-2,2':5',2''-terthiophene: a new monomer precursor to chiral regioregular poly(thiophene). J Mater Chem, 1999, 8: 1109-1111

[17]

Meskers S S J, Langeveld-Voss B M W, Janssen R A J. Circular polarization of the fluorescence from films of poly(p-phenylene vinylene) and polythiophene with chiral side chains. Adv Mater, 2000, 12: 589-594

[18]

Cornelissen J J L M, Peeters E, Janssen R A J, Meijer E W. Chiroptical properties of a chiral-substituted poly(thienylenevinylene). Acta Polym, 1998, 49: 471-476

[19]

Peeters E, Delmotte A, Janssen R A J, Meijer E W. Chiroptical properties of poly{2, 5-bis[(S)-2-methylbutoxy]-1, 4-phenylene vinylene}. Adv Mater, 1997, 9: 493-496

[20]

Peeters E, Janssen R A J, Meijer E W. Effect of intrachain order on the chiroptical properties of chiral poly(p-phenylene vinylenes). Synth Met, 1999, 102: 1105-1106

[21]

Oda M, Nothofer H G, Lieser G, Scherf U, Meskers S C J, Neher D. Circularly polarized electroluminescence from liquid-crystalline chiral polyfluorenes. Adv Mater, 2000, 12: 362-365

[22]

Oda M, Meskers S C J, Nothofer H G, Scherf U, Neher D. Chiroptical properties of chiral-substituted polyfluorenes. Synth Met, 2000, 111-112: 575-577

[23]

Oda M, Nothofer H G, Scherf U, Sunjic V, Richter D, Regenstein W, Neher D. Chiroptical properties of chiral substituted polyfluorenes. Macromolecules, 2002, 35: 6792-6798

[24]

Lai L M, Lam J W Y, Tang B Z. Synthesis and chiroptical properties of L-valine-containing poly(phenylacetylene)s with (a)chiral pendant terminal groups. J Polym Sci Part A: Polym Chem, 2006, 44: 2117-2129

[25]

Lai L M, Lam J W Y, Tang B Z. Facile synthesis and high optical activity of poly(1-pentyne)s carrying amino-acid pendant groups. J Polym Sci Part A: Polym Chem, 2006, 44: 6190-6201

[26]

Toyoda S, Fujiki M. Experimental evidence for helical conformation of poly(methylphenylsilylene) in solution. Chem Lett, 1999, 28: 699-700

[27]

Koe J R, Fujiki M, Motonaga M, Nakashima H. Cooperative helical order in optically active poly(diarylsilylenes). Macromolecules, 2001, 34: 1082-1089

[28]

Cheng Y J, Liang H, Luh T Y. Chiral silylene-spaced divinylarene copolymers. Macromolecules, 2003, 36: 5912-5914

[29]

Zhang Z B, Motonaga M, Fujiki M, McKenna C E. The first optically active polycarbazoles. Macromolecules, 2003, 36: 6956-6958

[30]

Bouman M M, Havinga E E, Jassen R A J, Meijer E W. Chiroptical properties of regioregular chiral polythiophenes. Mol Cryst Liq Cryst, 1994, 256: 439-448

[31]

Langeveld-Voss B M W, Beljonne D, Shuai Z, Janssen R A J, Meskers S C J, Meijer E W, Brédas J-L. Investigation of exciton coupling in oligothiophenes by circular dichroism spectroscopy. Adv Mater, 1998, 10: 1343-1348

[32]

Curran S A, Ajayan P M, Blau W J, Carroll D L, Coleman J N, Dalton A B, Davey A P, Drury A, McCarthy B, Maier S, Strevens A. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv Mater, 1998, 10: 1091-1093

[33]

Cowart M, Faghih R, Curtis M P, Gfesser G A, Bennani Y L, Black L A, Pan L, Marsh K C, Sullivan J P, Esbenshade T A, Fox G B, Hancock A A. 4-(2-[2-(2(R)-Methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile and related 2-aminoethylbenzofuran H3 receptor antagonists potently enhance cognition and attention. J Med Chem, 2005, 48: 38-55

[34]

Li X, Li C, Yan J, Lu J, Liang H. Synthesis and Chiroptical properties of poly (p-phenylenevinylene-alter-m-phenylenevinylene) bearing (-)-trans-myrtanoxyl groups on the p-phenylene rings. J Polym Sci Part A: Polym Chem, 200846: 3336-3343

[35]

Yan J, Lu J, Liang H. Synthesis and properties of poly(m-phenylenevinylene). Acta Polym Sin, 2004, 3: 434-438 (in Chinese)

[36]

Asada K, Kobayashi T, Naito H. Temperature dependence of photoluminescence in polyfluorene thin films—Huang–Rhys factors of as-coated, annealed and crystallized thin films. Thin Solid Films, 2006, 499: 192-195

[37]

Kong F, Zhang S Y, Yang C Z, Yuan R K. Interchain excited states in annealed poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] films. Mater Lett, 2006, 60: 3887-3890

[38]

Tretiak S, Saxena A, Martin R L, Bishop A R. Interchain electronic excitations in poly(phenylenevinylene) (PPV) aggregates. J Phys Chem B, 2000, 104: 7029-7034

[39]

Dubus S, Marceau V, Leclerc M. Helical conjugated polymers by design. Macromolecules, 2002, 35: 9296-9299

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (287KB)

939

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/