Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University;
Show less
History+
Published
05 Dec 2008
Issue Date
05 Dec 2008
Abstract
ZnO nanorings were synthesized on a large scale by an easy solution-based method at 70°C for 5 h using hexamethylenetramine (C6H12N4, HMT) and Zn(NO3)2·2H2O as raw materials in the presence of surfactant poly(acrylamide-co-diallyldimethylammonium chloride) (PAM-CTAC). The structure and morphology of the products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The influence of experimental conditions such as concentration of surfactant and reactants, reaction temperature on the structure and morphology of the products were investigated. A probable formation mechanism of ZnO nanorings in the presence of surfactant PAM-CTAC was discussed. The results show that the products are wurtzite hexagonal ZnO nanorings with an inner diameter of 220 nm and a wall thickness of 70 nm. Reaction temperature and concentration of reactants influence the shape and size of ZnO nanorings but PAM-CTAC plays the key role in the formation of ZnO nanorings. Through adjusting the concentration of PAM-CTAC, controlled-synthesis of ZnO nanorings can be realized. A room temperature photoluminescence (PL) spectrum of ZnO obtained shows that the full width at half maximum (FWHM) of the UV emission (∼ 7 nm) is much narrower than that of commercial ZnO bulk crystals (∼ 18 nm). The narrow FWHM confirms the uniformity and narrow size distribution of the synthesized ZnO crystals.
PENG Yin, BAO Ling.
Controlled-synthesis of ZnO nanorings. Front. Chem. China, 2008, 3(4): 458‒463 https://doi.org/10.1007/s11458-008-0081-5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Pan Z W, Dai Z R, Wang Z L . Nanobelts of semiconducting oxides. Science, 2001, 291: 1947–1949. doi:10.1126/science.1058120 2. Kong X Y, Wang Z L . Spontaneous polarization-inducednanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Let., 2003, 3(12): 1625–1361. doi:10.1021/nl034463p 3. Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D . Room-temperatureultraviolet nanowire nanolasers. Science, 2001, 292: 1897–1899. doi:10.1126/science.1060367 4. Meng X M, Lee C S, Lee S T, Hu J Q . Thermal reductionroute to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chem Mater, 2003, 15(1): 305–308. doi:10.1021/cm020649y 5. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H . One-dimensionalnanostructures: synthesis, characterization and applications. Adv Mater, 2003, 15(5): 353–389. doi:10.1002/adma.200390087 6. Vayssieres L . Growthof arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater, 2003, 15(5): 464–466. doi:10.1002/adma.200390108 7. Peterson R B, Fields C L, Gregg B A . Epitaxial chemical deposition of ZnO nanocolumns fromNaOH solutions. Langmuir, 2004, 20(12): 5114–5118. doi:10.1021/la049683c 8. Liu B, Zeng H C . Hydrothermal synthesis ofZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc, 2003, 125(15): 4430–4431. doi:10.1021/ja0299452 9. Li F, Ding Y, Gao P X, Xin X Q, Wang Z L . Single-crystal hexagonal disks and ringsof ZnO: low-temperature, Large-scale synthesis and growth mechanism. Angew Chem Int Ed, 2004, 43(39): 5238–5242. doi:10.1002/anie.200460783 10. Zhong X H, Knoll W . Morphology-controlled large-scalesynthesis of ZnO nanocrystals from bulk ZnO. Chem Commun, 2005, 9: 1158–1160 11. Govender K, Boyle D S, Kenway P B, O'Brien P . Understandingthe factors that govern the deposition and morphology of thin filmsof ZnO from aqueous solution. J Mater Chem, 2004, 14(16): 2575–2591. doi:10.1039/b404784b 12. Kong X Y, Ding Y, Yang R, Wang Z L . Single-crystalnanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303: 1348–1351. doi:10.1126/science.1092356 13. Gao P M, Lao C S, Hughes W L, Wang Z L . Three-dimensionalinterconnected nanowire networks of ZnO. Chem Phys Let, 2005, 408(1–3): 174–178. doi:10.1016/j.cplett.2005.04.024 14. Gao P X, Wang Z L . Nanopropeller arrays of zincoxide. Appl Phys Let, 2004, 84(15): 2883–2885. doi:10.1063/1.1702137 15. Buha J, Djerdj I, Niederberger M . Nonaqueous synthesis of nanocrystalline indium oxideand zinc oxide in the oxygen-free solvent acetonitrile. Cryst Growth & Des, 2007, 7(1): 113–116. doi:10.1021/cg060623+ 16. Ghoshal T, Kar S, Chaudhuri S . ZnO doughnuts: controlled synthesis, growth mechanismand optical properties. Cryst Growth &Des, 2007, 7(1): 136–141. doi:10.1021/cg060289h 17. Peng Y, Xu A W, Deng B, Antonietti M, CÖlfen H . Polymer-controlled crystallizationof zinc oxide hexagonal nanorings and disks. J Phys Chem B, 2006, 110(7): 2988–2993. doi:10.1021/jp056246d 18. Zou Q, Zhang Z S, Li H Y, Hu M, Qin Y X, Liu Z G . Synthesis and characterization of ZnO nanobelts via the reactionbetween zinc acetate and polyvinyl alcohol. Chen J Chin Uni, 2006, 27(7): 1211–1217 (in Chinese) 19. Chou K S, Chen W H, Huang CS . Precipitation studies of hydrous zinc oxide colloids. J Chin Inst Chem Eng, 1990, 21(6): 327–334 20. Grodzicki Z, Szlky E . Hydrates of Zn(II) HMTA salts:part II. Polish J Chem, 1984, 58: 999–1004 21. Grodzicki Z, Szlky E . Hydrates of Zn(II) HMTA salts:part III. Polish J Chem, 1984, 58: 1009–1013 22. Taubert A, Palms D, Weiss Ö, Piccini M T, Batchelder D N . Polymer-assisted controlof particle morphology and particle size of zinc oxide precipitatedfrom aqueous solution. Chem Mater, 2002, 14: 2594–2601. doi:10.1021/cm011670m 23. Taubert A, Kübel C, Martin D C . Polymer-induced microstructure variation in zinc oxidecrystals precipitated from aqueous solution. J Phys Chem B, 2003, 107(12): 2660–2666. doi:10.1021/jp020569h 24. Tian Z R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J, Rodriguez M A, Konishi H, Xu H F . Complex and oriented ZnOnanostructures. Nat Mater, 2003, 2(12): 821–826. doi:10.1038/nmat1014 25. Geng C, Jiang Y, Yao Y, Meng X, Zapien J A, Lee C S, Lifshitz Y, Lee S T . Well-aligned ZnO nanowire arrays fabricated on siliconsubstrates.Adv Funct Mater, 2004, 14(6): 589–594. doi:10.1002/adfm.200305074
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.