Modification effects of amphiphilic comb-like polysiloxane containing polyether side chains on the PVDF membranes prepared phase inversion process

QIAN Yanling, WANG Jianhua, ZHU Baoku, ZHANG Mei, DU Chunhui, XU Youyi

PDF(285 KB)
PDF(285 KB)
Front. Chem. China ›› 2008, Vol. 3 ›› Issue (4) : 432-439. DOI: 10.1007/s11458-008-0078-0

Modification effects of amphiphilic comb-like polysiloxane containing polyether side chains on the PVDF membranes prepared phase inversion process

  • QIAN Yanling, WANG Jianhua, ZHU Baoku, ZHANG Mei, DU Chunhui, XU Youyi
Author information +
History +

Abstract

Amphiphilic comb-like polysiloxane (ACPS) containing polyether side chains was used as the modification reagent in the preparation of hydrophilic porous poly(vinylidene fluoride) (PVDF) membranes via a phase inversion process. The effects of ACPS on morphology, crystallinity, mechanical properties, reservation of ACPS in the phase inversion process, chemical structure, hydrophilicity and filterability performance of porous PVDF membranes were discussed. It was found that the addition of ACPS would result in the delayed demixing which yields “sponge-like” sublayers and longer crystallization time during the membrane formation process. It was revealed that O/F ratios of the bulk membrane were almost the same as those of the corresponding casting solutions which obviously indicated the high reservation of ACPS in the membrane formation process. The fact that the O/F ratios in the membrane surface layers were much higher than those in the bulk membrane proved the enrichment of ACPS on the surface. The filterability experiments and water contact angle testing proved the hydrophilicity of the blend membranes. Through a schematic model, the mechanism relating the membrane structure and performance was interpreted. From the observed results, it can be concluded that ACPS acts as a potential candidate material for preparing PVDF membranes with extraordinary hydrophilicity and filterability.

Cite this article

Download citation ▾
QIAN Yanling, WANG Jianhua, ZHU Baoku, ZHANG Mei, DU Chunhui, XU Youyi. Modification effects of amphiphilic comb-like polysiloxane containing polyether side chains on the PVDF membranes prepared phase inversion process. Front. Chem. China, 2008, 3(4): 432‒439 https://doi.org/10.1007/s11458-008-0078-0

References

1. Ochoa N A, Masuelli M, Marchese J . Effect of hydrophilicity on fouling of an emulsifiedoil wastewater with PVDF/PMMA membranes. J Membr Sci, 2003, 226(1-2): 203–211. doi:10.1016/j.memsci.2003.09.004
2. Liu F, Zhu B K, Xu Y Y . Improving the hydrophilicity of poly(vinylidene fluoride)porous membranes by electron beam initiated surface grafting of AA/SSSbinary monomers. Appl Surf Sci, 2006, 253: 2096–2101. doi:10.1016/j.apsusc.2006.04.007
3. Ying L, Kang E T, Neoh K G . Covalent immobilization of glucose oxidase on microporousmembranes prepared from poly(vinylidene fluoride) with grafted poly(acrylicacid) side chainsJ Membr Sci, 2002, 208: 361–374
4. Park Y W, Inagaki N . Surface modification of poly(vinylidenefluoride) film by remote Ar, H2, and O2 plasmas. Polymer, 2003, 44: 1569–1575. doi:10.1016/S0032-3861(02)00872-8
5. Clochard M C, Bàgue J, Lafon A, Caldemaison D, Bittencourt C, Pireaux J J, Betz N . Tailoring bulkand surface grafting of poly(acrylic acid) in electron-irradiatedPVDF. Polymer, 2004, 45: 8683–8694. doi:10.1016/j.polymer.2004.10.052
6. Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H J . Surface modification of poly(vinylidenefluoride) to improvethe osteoblast adhesion. Biomaterials, 2003, 24: 3663–3670. doi:10.1016/S0142-9612(03)00235-7
7. Han S, Choi W K, Yoon K H, Koh S K . Surface reactionon polyvinylidenefluoride (PVDF) irradiated by low energy ion beamin reactive gas environment. J Appl PolymSci, 1999, 72: 41–47. doi:10.1002/(SICI)1097-4628(19990404)72:1<41::AID-APP4>3.0.CO;2-J
8. Enrica F, Johannes C J, Alessandra C, Efrem C, Enrico D . Effect of additives in the casting solutionon the formation of PVDF membranes. Desalination, 2006, 192: 190–197. doi:10.1016/j.desal.2005.09.021
9. Wang Y Q, Wang T, Su Y L, Peng F B, Wu H, Jiang Z Y . RemarkableReduction of Irreversible Fouling and Improvement of the PermeationProperties of Poly(ether sulfone) Ultrafiltration Membranes by Blendingwith Pluronic F127. Langmuir, 2005, 21: 11856–11862. doi:10.1021/la052052d
10. Yeow M L, Liu Y, Li K . Preparation of porous PVDF hollow fiber membrane via a phase inversion method using lithiumperchlorate (LiClO4) as an additive. JMembr Sci, 2005, 258: 16–22. doi:10.1016/j.memsci.2005.01.015
11. LU Y, CHEN H L, LI B G . Influence of Additives on Phase Separation Process ofPVDF Solution and Membrane Morphology. Acta Polymerica Sinica, 2002, 5: 656–661 (in Chinese)
12. Lu X F, Bian X K . Surface modification of ultrafiltrationmembrane and its application. Membr Sci &Technol, 2003, 23: 97–115 (in Chinese)
13. Chen H, Belfort G . Surface modification of poly(ethersulfone) ultrafiltration membranes by low-temperature plasma-inducedgraft polymerization. J Appl Polym Sci, 1999, 72: 1699–1711. doi:10.1002/(SICI)1097-4628(19990624)72:13<1699::AID-APP6>3.0.CO;2-9
14. Pieracci J, Crivello J V, Belfort G . Photochemical modification of 10 kDa polyethersulfoneultrafiltration membranes for reduction of biofouling. J Membr Sci, 1999, 156: 223–240. doi:10.1016/S0376-7388(98)00347-0
15. Nunes S P, Sforca M L, Peinemann K V . Dense hydrophilic composite membranes for ultrafiltration. J Membr Sci, 1995, 106: 49–56. doi:10.1016/0376-7388(95)00076-O
16. LI B, CHEN W G, WANG X G, ZHOU Q X . PNIPAAm-GraftedLayers on Polypropylene Films II. Surface Properties and TemperatureSensitivity Study. Acta Polymerica Sinica, 2003, 1: 7–12 (in Chinese)
17. Kelly S T, Zydney A L . Mechanisms for BSA foulingduring microfiltration. J Membr Sci, 1995, 107: 115–127. doi:10.1016/0376-7388(95)00108-O
18. Kim J H, Lee K H . Effect of PEG additive onmembrane formation by phase inversion. J Appl Polym Sci, 1998, 138: 153–163
19. Kim I C, Lee K H . Effect of poly(ethylene glycol)200 on the formation of a polyetherimide asymmetric membrane and itsperformance in aqueous solvent mixture permeation. J Membr Sci, 2004, 230: 183–188. doi:10.1016/j.memsci.2003.11.002
20. Chen N P, Hong L . Surface phase morphologyand composition of the casting films of PVDF–PVP blend. Polymer, 2002, 43: 1429–1436. doi:10.1016/S0032-3861(01)00671-1
21. Qin J J, Wong F S, Li Y, Liu Y T . A high fluxultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol. J Membr Sci, 2003, 211: 139–147. doi:10.1016/S0376-7388(02)00415-5
22. Park J Y, Acar M H, Ariya A, William K, Mayes A M . Polysulfone-graft-poly(ethyleneglycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27: 856–865. doi:10.1016/j.biomaterials.2005.07.010
23. Ma X L, Su Y L, Sun Q, Wang Y Q, Jiang Z Y . Preparation of protein-adsorption-resistantpolyethersulfone ultrafiltration membranes through surface segregationof amphiphilic comb copolymer. J MembrSci, 2007, 292: 116–124. doi:10.1016/j.memsci.2007.01.024
24. Hester J F, Banerjee P, Won Y Y, Akthakul A, Acar M H, Mayes A M . ATRP of Amphiphilic Graft Copolymers Based on PVDF andTheir Use as Membrane Additives. Macromolecules, 2002, 35: 7652–7661. doi:10.1021/ma0122270
25. Hester J F, Mayes A M . Design and performance offoul-resistant poly(vinylidene fluoride) membranes prepared in a single-stepby surface segregation. J Membr Sci, 2002, 202: 119–135. doi:10.1016/S0376-7388(01)00735-9
26. Irvine D J, Mayes A M . Nanoscale Clustering of RGDpeptides at surfaces using comb polymers. 1. synthesis and characterizationof comb thin films.Biomacromolecules, 2001, 2: 85–94. doi:10.1021/bm005584b
27. Hester J F, Banerjee P, Mayes A M . Preparation of protein-resistant surfaces on poly(vinylidenefluoride) membranes via surfacesegregation. Macromolecules, 1999, 32: 1643–1650. doi:10.1021/ma980707u
28. Legrow G E, Buese M A . Alkylmethylsiloxane dimethylsiloxanepolyalkylene oxide copolymers. Eur Patent, EP. 1149872A2.2001-10-31
29. Lovinger A J . Annealing of Poly (vinylidene fluoride) and formation of a fifthphase. Macromolecules, 1982, 15: 40–44. doi:10.1021/ma00229a008
30. Zheng Q Z, Wang P, Yang Y N . Rheological and thermodynamic variation in polysulfonesolution by PEG introduction and its effect on kinetics of membraneformation via phase-inversion process. J Membr Sci, 2006, 279: 230–237. doi:10.1016/j.memsci.2005.12.009
31. Nardin C, Meier W . Hybrid materials from amphiphilicblock copolymers and membrane proteins. Molecular Biotechnology, 2002, 90: 17–26. doi:10.1016/S1389-0352(01)00052-6
32. Callewaert M, Gohy J F, Dupont-Gillain C C, Laurence B P and Rouxhet P G . Surface morphology and wettingproperties of surfaces coated with an amphiphilic diblock copolymer. Surf Sci, 2005, 575: 125–135. doi:10.1016/j.susc.2004.11.014
33. Yuan J Y, Wei G Y, Wang Y M, Pan G Y . Synthesesand Characterization of ABA Type Amphiphilic Block Copolymer. Acta Polymerica Sinica, 2001, 5: 625–628 (in Chinese)
34. Gao B J, Yang Y F, Jiu H F, Ge Z . Synthesis ofWater-Solution Amphiphilic Acrylamide-Styrene Block Polymer UsingMicroemulsion Method. Acta Polymerica Sinica, 2001, 5: 608–612 (in Chinese)
PDF(285 KB)

Accesses

Citations

Detail

Sections
Recommended

/