Interaction of water-soluble bridged porphyrin
with DNA
WANG Kai, ZHANG Zhi, GUO Qianni, BAO Xiaoping, LI Zaoying
Author information+
College of Chemistry and Molecular Sciences, Wuhan University;
Show less
History+
Published
05 Dec 2008
Issue Date
05 Dec 2008
Abstract
A water-soluble porphyrin dimer (Por Dimer) containing eight positive charges, bridged by 4,4′-dicarboxy-2,2′-bipyridine, has been synthesized. With Meso-tetrakis(N-methyl-pyridium-4-yl)porphyrin (H2TMPyP) as the reference compound, the water-soluble porphyrin dimer was investigated for its interaction with DNA by absorption, fluorescence, and circular dichroism (CD) spectroscopy. The apparent affinity binding constant (Kapp = 1.2 × 106) of Por Dimer binding to CT DNA was measured by a competition method with ethidium bromide (EB) (that of H2TMPyP was 6.9 × 106). The cleavage ability of Por Dimer to pBR322 plasmid DNA was studied by gel electrophoresis. The results suggest that the binding modes of Por Dimer were complex and involve both intercalation and outside binding.
WANG Kai, ZHANG Zhi, GUO Qianni, BAO Xiaoping, LI Zaoying.
Interaction of water-soluble bridged porphyrin
with DNA. Front. Chem. China, 2008, 3(4): 406‒412 https://doi.org/10.1007/s11458-008-0073-5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Uno H, Masumoto A, Ono N . Hexagonal columnar porphyrin assembly by unique trimericcomplexation of a porphyrin dimer with-stacking: remarkable thermalbehavior in a solid. J Am Chem Soc, 2003, 125: 12082–12083. doi:10.1021/ja036203f 2. Kubo Y, Ishii Y, Yoshizawa T, Tokita S . Effective cation-assistedchirality induction using a dibenzo-diaza-30-crown-10 with bis-(zinc(II)porphyrin) units. Chem Commun, 2004, 1394–1395 3. Cheng F, Drain C M, Grohmann K . Porphyrins linked directly to the 5, 5′ positionsof 2, 2′-bipyridine: a new supramolecular building block andswitch. Inorg Chem, 2003, 42: 2075–2083. doi:10.1021/ic025985v 4. Qin Y, Bakker E . Eliminationof dimer formation in in III porphyrin-based anion-selective membranesby covalent attachment of the ionophore. Anal Chem, 2004, 76: 4379–4386. doi:10.1021/ac049577f 5. Blake I M, Krivokapic A, Katterle M, Anderson H L . Anderson, fusion and planarization of a quinoidal porphyrin dimer. Chem Commun, 2002, 1662–1663 6. Hajjaj F, Yoon Z S, Yoon M C, Park J, Satake A, Kim D H, Kobuke Y . Assemblies of supramolecularporphyrin dimers in pentagonal and hexagonal arrays exhibiting light-harvestingantenna function. J Am Chem Soc, 2006, 128: 4612–4623. doi:10.1021/ja0583214 7. Ema T, Nemugaki S, Tsuboi S, Utaka M . Synthesis andCD spectrum of chiral porphyrin dimer. Tetrahedron Lett, 1995, 36: 5905–5908 8. Gust D, Moore T A, Moore A L . Mimicking bacterial photosynthesis. Pure & Appl Chem, 1998, 70: 2189–2200. doi:10.1351/pac199870112189 9. Wanger R W, Lindsey J S, Seth J, Palaniappan V, Bocian D F . Molecular optoelectronicgates. J Am Chem Soc, 1996, 118: 3996–3997. doi:10.1021/ja9602657 10. Brandon E J, Kollmar C, Miller J S . Orbital overlap and antiferromagnetic coupling in substitutedtetraphenylporphinatomanganate (iii) tetracyanoethenide based magnets.The Importance of σ-dz2-pz Overlap. J Am Chem Soc, 1998, 120: 1822. doi: 10.1021/ja973452t 11. Anderson H L, Martin S J, Bradly D C . Synthesis and third-order nonlinear optical propertiesof a conjugated porphyrin polymer. AngewChem Int Ed Engl, 1994, 33: 655–657. doi:10.1002/anie.199406551 12. MacDonald I J, Dougherty T J . Basic principles of photodynamictherapy. J Porphyrins Phthalocyanines, 2001, 5: 105–129. doi:10.1002/jpp.328 13. Zupán K, Herényi L, Tóth K, Egyeki M, Csı´k G . Binding of cationic porphyrinto isolated DNA and nucleoprotein complex: quantitative analysis ofbinding forms under various experimental conditions. Biochemistry, 2005, 44: 15000–15006. doi:10.1021/bi0510227 14. Mettath S, Munson B R, Pandey R K . DNA interaction and photocleavage properties of porphyrinscontaining cationic substituents at the peripheral position. Bioconjugate Chem, 1999, 10: 94–102. doi:10.1021/bc9800872 15. Pratviel G, Pitie M, Bernadou J, Meunier B . Furfuralals indikator einer DNA-spaltung durch hydroxylierung des C5′-kohlenstoffatomsvon desoxyribose. Angew Chem Int Ed Engl, 1991, 6: 718–720 16. Bejune S A, Shelton A H, Mcmillin D R . New dicationic porphyrin ligands suited for intercalationinto b-form DNA. Inorg Chem, 2003, 42: 8465–8475. doi:10.1021/ic035092i 17. Sari M A, Battioni J P, Dupre∘ D, Mansuy D, Le Pecq J B . Interaction of cationic porphyrins withDNA: importance of the number and position of the charges and minimumstructural requirements for intercalation. Biochemistry, 1990, 29: 4205–4215. doi:10.1021/bi00469a025 18. Ohyama T, Mita H, Yamamoto Y . Binding of 5,10,15,20-tetrakis (nmethylpyridinium -4-yl)-21H,23H-porphyrinto an AT-rich region of a duplex DNA. BiophysChem, 2005, 113: 53–59. doi:10.1016/j.bpc.2004.07.039 19. Kima J O, Leea Y A, Jina B, Parka T, Songb R, Kim S K . Binding mode of cationic monomer and dimer porphyrin with nativeand synthetic polynucleotides studied by polarized light spectroscopy. Biophys Chem, 2004, 111: 63–71. doi:10.1016/j.bpc.2004.04.004 20. Clauss S L, Pastel M J . Stable porfimer sodium compositionsand methods for their manufacture. EuropePatent. 0568323B1, 1997 21. Genady A R, Gabel D . Synthesis of triazole-andpyridine-bridged porphyrin-chlorin and porphyrin dimers. Tetrahedron Lett, 2003, 44: 2915–2917. doi:10.1016/S0040-4039(03)00468-4 22. Li D, Casas C, Etemad-Moghadam G, Meunier B . Synthesisof water-soluble, cationic functionalized metalloporphyrins havinga cytotoxic activity. New J Chem, 1990, 14: 421–431 23. Ishikawa Y, Yamakawa N, Uno T . Potent DNA photocleavage by zinc(ii) complexes of cationicbis-porphyrins linked with aliphatic diamine. Bioorg Med Chem, 2002, 10: 1953–1960. doi:10.1016/S0968-0896(02)00003-2 24. Kochevar I E, Redmond R W . Photosensitized productionof singlet oxygen. Methods Enzymol, 2000, 319: 20–28. doi:10.1016/S0076-6879(00)19004-4 25. Jain R K, Sarracino D A, Richert C . A Tetraphenylporphyrin-peptide hybrid with high affinityfor single-stranded DNA. Chem Commun, 1998, 3: 423–424. doi:10.1039/a707803j 26. Uno T, Hamasaki K, Tanigawa M, Shimabayashi S . Shimabayashi,Binding of meso- tetrakis(n-methylpyridinium-4-yl)porphyrin to doublehelical RNA and DNA RNA hybrids. InorgChem, 1997, 36: 1676–1683. doi:10.1021/ic960824a 27. Fiel R J, Howard J C, Mark E H, Datta-Gupta N . Interactionof DNA with a porphyrin ligand: evidence for intercalation. Nucleic Acids Res, 1979, 6: 3093–3118. doi:10.1093/nar/6.9.3093 28. Dougherty G J, Pilbrow R, Skorobogaty A, Smith T D . Electronspin resonance spectroscopic and spectrophotometric investigationof the binding of tetracationic porphyrins and porphyrazines withcalf thymus DNA. J Chem Soc, Faraday Trans, 1985, 2(81): 1739–1759 29. Kelly J M, Murphy M J, Mcconnell D J, Ohuigin C . Acomparative study of the interaction of 5,10,15,20-tetrakis (n-methylpyridinium-4-yl)porphyrinand its zinc complex with dna using fluorescence spectroscopy andtopoisomerization. Nucleic Acids Res, 1985, 13: 167–184. doi:10.1093/nar/13.1.167 30. Gandini S C M, Borissevitch I E, Perussi J R, Imasato H, Tabak M . Aggregation of meso-tetrakis(4-n-methyl-pyridiniumyl)porphyrin in its free base, fe(iii) and mn(iii) forms due to the interactionwith DNA in aqueous solutions: optical absorption, fluorescence andlight scattering studies. J Lumin, 1998, 78: 53–61. doi:10.1016/S0022-2313(97)00278-0 31. Carvlin M J, Mark E, Fiel R J . Intercalative and nonintercalative binding of large cationicporphyrin ligands to polynucleotides. NucleicAcids Res, 1983, 11, 6141–6154. doi:10.1093/nar/11.17.6141 32. Pasternack R F, Giannetto A, Pagano P, Gibbs E J . Self-assemblyof porphyrins on nucleic acids and polypeptides. J Am Chem Soc, 1991, 113: 7799–7800. doi:10.1021/ja00020a072 33. Carvlin M J, Fiel R J . Intercalative and nonintercalativebinding of largecationic porphyrin ligands to calf thymus DNA. Nucleic Acids Res, 1983, 11: 6121–6139. doi:10.1093/nar/11.17.6121 34. Chen X D, Liu M H . Induced chirality of binaryaggregates of oppositely charged water-soluble porphyrins on DNA matrix. J Inorg Biochem, 2003, 94: 106–113. doi:10.1016/S0162-0134(02)00645-1 35. Pasternack R F, Gibbs E J, Villafranca J . Interactions of porphyrins with nucleic acids. Biochemistry, 1983, 22: 2406–2414. doi:10.1021/bi00279a016 36. Tian J N, Liu J Q, Xie J P, Yao X J, Hua Z D, Chen X G . Binding of wogonin to human serum albumin: a common binding siteof wogonin in subdomain IIA. J PhotochemPhotobio B: Biol, 2004, 74: 39–45. doi:10.1016/j.jphotobiol.2004.01.001 37. Zhong W Y, Yu J S, Liang Y O . Chlorobenzylidine-herring sperm DNA interaction: bindingmode and thermodynamic studies. SpectrochimActa Part A, 2003, 59: 1281–1288. doi:10.1016/S1386-1425(02)00301-3 38. LePecq J B, Paoletti C . A fluorescent complex betweenethidium bromide and nucleic acids, physical-chemical characterization. J Mol Bio, 1967, 27: 87–106. doi:10.1016/0022-2836(67)90353-1 39. Li Y J, Li X F, Li Y L, Liu H B, Wang S, Gan H Y, Li J B, Wang N, He X R, Zhu D B . Controlled self-assembly bbehavior ofan amphiphilic bisporphyrinbipyridinium-palladium complex: from multibilayervesicles to hollow ccapsules. Angew ChemInt Ed, 2006, 45: 3639–3643. doi:10.1002/anie.200600554 40. Tomohiro Y, Satake A, Kobuke Y . Synthesis of bipyridylene-bridged bisporphyrin by nickel-mmediatedcoupling reaction: on-off control of cofacial porphyrin unit by reversiblecomplexation. J Org Chem, 2001, 66: 8442–8446. doi:10.1021/jo015852b
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.