PDF(256 KB)
Banana fiber-reinforced biodegradable soy protein
composites
- Kumar Rakesh1, Choudhary Veena2, Varma Ik2, Mishra Saroj3
Author information
+
1.Centre for Polymer Science and Engineering, Indian Institute of Technology; Department of Chemistry, Wuhan University; 2.Centre for Polymer Science and Engineering, Indian Institute of Technology; 3.Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology;
Show less
History
+
Published |
05 Sep 2008 |
Issue Date |
05 Sep 2008 |
Abstract
Banana fiber, a waste product of banana cultivation, has been used to prepare banana fiber reinforced soy protein composites. Alkali modified banana fibers were characterized in terms of density, denier and crystallinity index. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were also performed on the fibers. Soy protein composites were prepared by incorporating different volume fractions of alkali-treated and untreated fibers into soy protein isolate (SPI) with different amounts of glycerol (25%–50%) as plasticizer. Composites thus prepared were characterized in terms of mechanical properties, SEM and water resistance. The results indicate that at 0.3 volume fraction, tensile strength and modulus of alkali treated fiber reinforced soy protein composites increased to 82% and 963%, respectively, compared to soy protein film without fibers. Water resistance of the composites increased significantly with the addition of glutaraldehyde which acts as crosslinking agent. Biodegradability of the composites has also been tested in the contaminated environment and the composites were found to be 100% biodegradable.
Cite this article
Download citation ▾
Kumar Rakesh, Choudhary Veena, Varma Ik, Mishra Saroj.
Banana fiber-reinforced biodegradable soy protein
composites. Front. Chem. China, 2008, 3(3): 243‒250 https://doi.org/10.1007/s11458-008-0069-1
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Hill S Carsthat grow on treesNew Scientists 1997 3620672068
2. Wang B Sain M Oksman K Study of structural morphology of hemp fiber from the microto the nanoscaleAppl Compos Mater 2007 1489103. doi:10.1007/s10443‐006‐9032‐9
3. Paetau I Chen C Z Jane J Biodegradable plastic made from soybean products. II. Effectsof cross-linking and cellulose incorporation on mechanical propertiesand water absorptionJ Environ Polym Degrad 1994 2211217. doi:10.1007/BF02067447
4. Oksman K Clemmons C Mechanical properties and morphologyof impact modified polypropylene-wood flour compositesJ Appl Polym Sci 1998 6715031513. doi:10.1002/(SICI)1097‐4628(19980228)67:9<1503::AID‐APP1>3.0.CO;2‐H
5. Maurizio A Luca C Ramiro D Bonaventura F Ezio M Annamaria M Broom fibers as reinforcing materials for polypropylene-basedcompositesJ Appl Polym Sci 1998 6810771089. doi:10.1002/(SICI)1097‐4628(19980516)68:7<1077::AID‐APP5>3.0.CO;2‐C
6. Kumar R B Amma M L G Thomas S Short sisal fiber reinforced styrene-butadiene rubber compositesJ Appl Polym Sci 1995 58597612. doi:10.1002/app.1995.070580315
7. Chen X Guo Q Mi Y Bamboo fiber-reinforced polypropylene composites: A studyof the mechanical propertiesJ Appl PolymSci 1998 6918911899. doi:10.1002/(SICI)1097‐4628(19980906)69:10<1891::AID‐APP1>3.0.CO;2‐9
8. Pothen L A Thomas S Neelakandan N R Short banana fiber reinforced polyester composites: Mechanical,failure and aging characteristicsJ ReinforcedPlast Compos 1997 16744765
9. Das S Saha A K Choudhary P K Basak R K Mitra B C Lang S Effectof steam pretreatment of jute fiber on dimensional stability of jutecompositeJ Appl Polym Sci 2000 7616521661. doi:10.1002/(SICI)1097‐4628(20000613)76:11<1652::AID‐APP6>3.0.CO;2‐X
10. Pickering K L Li Y Farell R L Lay M Interfacial modificationof hemp fiber reinforced composites using fungal and alkali treatmentJBiobased Materials and Bioenergy 2007 1109117
11. Kumar R Liu D Zhang L Advances in proteinous biomaterialsJ Biobased Materials and Bioenergy 2008 2124. doi:10.1166/jbmb.2008.204
12. Kumar R Mishra S Choudhary V Varma I K Enzymaticallymodified soy protein Part2-adhesion behaviourJ Adhesion Sc Technol 2004 18261273. doi:10.1163/156856104772759458
13. Sain M M Kokta B V J Toughened thermoplastic composite.I. Cross-linkable phenol formaldehyde and epoxy resins-coated cellulosic-filledpolypropylene compositesJ Appl Polym Sci 1993 4821812196. doi:10.1002/app.1993.070481212
14. Mwaikambo L Y Ansell M P Chemical modification of hemp,sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 2002 8422222234. doi:10.1002/app.10460
15. Mohanty A K Khan M A Sahoo S Hinrichsen G Effectof chemical modification on the performance of biodegradable juteyarn-Biopol¯ compositesJ Mat Sci 2000 3525892595. doi:10.1023/A:1004723330799
16. Otaigbe J U Goel H Babcock T Jane J Processabilityand properties of biodegradable plastics made from agricultural biopolymersJ Elastomers Plast 1999 315671
17. Paetau I Chen C Z Jane J L Biodegradable plastic made from soybean products. 1. Effectof preparation and processing on mechanical properties and water absorptionInd Eng Chem Res 1994 3318211827. doi:10.1021/ie00031a023
18. Liang F Wang Y Sun S Curing process and thermal mechanical properties of protein-basedpolymersJ Polym Eng 1999 19383393
19. Lodha P Netravali A N Characterization of interfacialand mechanical properties of “green” composites with soyprotein isolate and ramie fiberJ Mat Sci 2002 3736573665. doi:10.1023/A:1016557124372
20. Liu W Mohanty A K Askeland P Drzal L T Misra M Influence of fiber surface treatment onproperties of Indian grass fiber reinforced soy protein based biocompositesPolymer 2004 4575897596. doi:10.1016/j.polymer.2004.09.009
21. Madsen B Lilholt H Physical and mechanical propertiesof unidirectional plant fibre composites-an evaluation of the influenceof porosityCompos Sci Technol 2003 6312651272. doi:10.1016/S0266‐3538(03)00097‐6
22. Mwaikambo L Y Ansell M P Hemp fibre reinforced cashewnut shell liquid compositesCompos Sci Technol 2003 6312971305. doi:10.1016/S0266‐3538(03)00101‐5
23. Segal L Creely J J Martin A E Cornad C M An empiricalmethod for estimating the degree of crystallinity of native celluloseusing the X-Ray diffractometerText ResJ 1959 29786794. doi:10.1177/004051755902901003
24. Thygesen A Oddershede J Lilholt H Thomsen A B Stahl K On the determination of crystallinity andcellulose content in plant fibresCellulose 2005 12563573. doi:10.1007/s10570‐005‐9001‐8