Hydrothermal synthesis of 2D ordered macroporous
ZnO films
ZHANG Yinmin1, LAN Ding2, WANG Yuren2, WANG Fengping3
Author information+
1.National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences;School of Applied Science, University of Science and Technology Beijing; 2.National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences; 3.School of Applied Science, University of Science and Technology Beijing;
Show less
History+
Published
05 Jun 2008
Issue Date
05 Jun 2008
Abstract
The ZnO films with two-dimensional ordered macroporous structure were successfully fabricated through hydrothermal crystal growth of ZnO on the ZnO substrate covered with a monolayer of polystyrene (PS) spheres as template. The precursor solution of hydrothermal crystal growth of ZnO were prepared by equi-molar solution of Zn(NO3)2·6H2O and hexamethylenetramine (HMT). The confinement effect of the PS spheres template on the growth of ZnO nanorods and the influence of sodium citrate on the crystal growth of ZnO had been studied. The film surface morphology and the preferential growth of ZnO crystal were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Also, the photoluminescence spectrum of ZnO films had been measured, and the corresponding mechanism was discussed.
ZHANG Yinmin, LAN Ding, WANG Yuren, WANG Fengping.
Hydrothermal synthesis of 2D ordered macroporous
ZnO films. Front. Chem. China, 2008, 3(2): 229‒234 https://doi.org/10.1007/s11458-008-0044-x
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Könenkamp R Word R C Schlegel C Vertical nanowire light-emitting diodeAppl Phys Lett 2004 85(24)60046006. doi:10.1063/1.1836873 2. Huang M H Mao S Feick H Yan H Q Wu Y Y Kind H Weber E Russo R Yang P D Room-temperatureultraviolet nanowire nanolasersScience 2001 292(5523)18971899. doi:10.1126/science.1060367 3. Wang Z L Zincoxide nanostructures: growth, properties and applicationsJ Phys: Condens Matter 2004 16(25)829858. doi:10.1088/0953‐8984/16/25/R01 4. Huang Y Q Liu M D Zeng Y K Liu S B Progress ofstudy on ZnO thin film and its propertiesJournal of Inorganic Materials 2001 16(3)391397 (in Chinese) 5. Martin P M Good M S Johnston J W Posakony G J Bond L J Crawford S L Piezoelectricfilms for 100-MHz ultrasonic transducersThin Solid Films 2000 379(1–2)253258. doi:10.1016/S0040‐6090(00)01339‐0 6. Gordillo G Newmaterials used as optical window in thin film solar cellsSurf Rev Lett 2002 9(5&6)16751680. doi:10.1142/S0218625X02004207 7. Seelig E W Tang B Yamilov A Cao H Chang R P H Self-assembled 3D photonic crystals fromZnO colloidal spheresMater Chem Phys 2003 80(1)257263. doi:10.1016/S0254‐0584(02)00492‐3 8. Pease R F W Nanolithography and its prospects as a manufacturing technologyJ Vac Sci Technol B 1992 10(1)278285. doi:10.1116/1.586346 9. Silverman J P X-raylithography: Status, challenges, and outlook for 0.13 µm.J Vac Sci Technol B 1997 15(6)21172124. doi:10.1116/1.589231 10. Melngailis J Mondelli A A Berry III I L Mohondro R A review of ionprojection lithographyJ Vac Sci TechnolB 1998 16(3)927957. doi:10.1116/1.590052 11. Li Y Cai W P Duan G T Cao B Q Sun F Q Lu F Superhydrophobicityof 2D ZnO ordered pore arrays formed by solution-dipping templatemethodJ Colloid Interface Sci 2005 287(2)634639. doi:10.1016/j.jcis.2005.02.010 12. Sun F Q Cai W P Y Li Cao B Q Lu F Duan G T Zhang L D Morphology control and transferabilityof ordered through-pore arrays based on the electrodeposition of acolloidal monolayerAdv Mater 2004 16(13)11161121. doi:10.1002/adma.200400006 13. Wang X D Summers C J Wang Z L Large-scale hexagonal-patterned growth of aligned ZnO nanorodsfor nano-optoelectronics and nanosensor arraysNano Lett 2004 4(3)423426. doi:10.1021/nl035102c 14. Fan H J Fuhrmann B Scholz R Syrowatka F Dadgar A Krost A Zacharias M Well-orderedZnO nanowire arrays on GaN substrate fabricated via nanosphere lithographyJ Cryst Growth 2006 287(1)3438. doi:10.1016/j.jcrysgro.2005.10.038 15. Fan H J Lee W Scholz R Dadgar A Krost A Nielsch K Zacharias M Arrays of vertically alignedand hexagonally arranged ZnO nanowires: a new template-directed approachNanotech 2005 16(6)913917. doi:10.1088/0957‐4484/16/6/048 16. Fan H J Fleischer F Lee W Nielsch K Scholz R Zacharias M Gösele U Dadgar A Krost A Patterned growthof aligned ZnO nanowire arrays on sapphire and GaN layersSuperlattices Microstruct 2004 36(1–3)95105. doi:10.1016/j.spmi.2004.08.028 17. Fan H J Bertram F Dadgar A Christen J Krost A Zacharias M Self-assemblyof ZnO nanowires and the spatial resolved characterization of theirluminescenceNanotech 2004 15(11)14011404. doi:10.1088/0957‐4484/15/11/003 18. Wang X D Gao P X J Li Summers C J Wang Z L Rectangular Porous ZnO-ZnS Nanocables andZnS NanotubesAdv Mater 2002 14(23)17321735. doi:10.1002/1521‐4095(20021203)14:23<1732::AID‐ADMA1732>3.0.CO;2‐5 19. Wang Z L Novelzinc oxide nanostructures discovery by electron microscopyJournal of Physics: Conference Series 2006 26(1)16. doi:10.1088/1742‐6596/26/1/001 20. Wang Z L Song J H Piezoelectric nanogeneratorsbased on zinc oxide nanowire arraysScience 2006 312(5771)242246. doi:10.1126/science.1124005 21. Zhang H Yang D R Ji Y J Ma X Y Xu J Que D L Low temperaturesynthesis of flowerlike ZnO nanostructures by cetyltrimethylammoniumbromide-assisted hydrothermal processJPhys Chem B 2004 108(13)39553958. doi:10.1021/jp036826f 22. Vayssieres L Keis K Lindquist S E Hagfeldt A Purpose-builtanisotropic metal oxide material: 3D highly oriented microrod arrayof ZnOJ Phys Chem B 2001 105(17)33503352. doi:10.1021/jp010026s 23. Meulenkamp E A Synthesisand growth of ZnO nanoparticlesJ Phys ChemB 1998 102(29)55665572. doi:10.1021/jp980730h 24. Li W J Shi W E Yin Z W Growth habits of polar crystalsChinese Science Bulletin 1999 44(22)23882392 (in Chinese) 25. Tian Z R Voig J A t Liu J Mckenzie B Mcdermott M J Biomimetic arrays of orientedhelical ZnO nanorods and columnsJ Am ChemSoc 2002 124(44)1295412955. doi:10.1021/ja0279545 26. Tian Z R Voigt J A Liu J Mckenzie B Mcdermott M J Rodriguez M A Konishi H Xu H F Complex and oriented ZnO nanostructuresNat Mater 2003 2(12)821826. doi:10.1038/nmat1014 27. Andeen D Kim J H Lange F F Goh G K L Tripathy S Lateral epitaxial overgrowth of ZnO inwater at 90°CAdv Funct Mater 2006 16(6)799804. doi:10.1002/adfm.200500817 28. Tang Z K Wong G K L Yu P Kawasaki M Ohtomo A Koinuma H Segawa Y Room-temperature ultravioletlaser emission from self-assembled ZnO microcrystallite thin filmsAppl Phys Lett 1998 72(25)32703272. doi:10.1063/1.121620 29. Cho S Ma J Kim Y Sun Y Wong G K L Ketterson J B Photoluminescenceand ultraviolet lasing of polycrystalline ZnO thin films preparedby the oxidation of the metallic ZnApplPhys Lett 1999 75(18)27612763. doi:10.1063/1.125141 30. Xu P S Sun Y M Shi C S Xu F Q Pan H B Electronic structure of ZnO and its defectsScience in China(A) 2001 44(9)11741181 31. Fu Z X Guo C X Lin B X Liao G H Cathodoluminescenceof ZnO filmsChin Phys Lett 1998 15(6)457459 32. Zhang D H Wang Q P Xue Z Y Ultra violet photoluminescenc of ZnO films on differentsubstratesActa Physica Sinica 2003 52(6)14841487 33. Vanheusden K Warren W L Seager C H Tallant D R Voigy J A Gnade B E Mechanismsbehind green photoluminescence in ZnO phosphor powdersJ Appl Phys 1996 79(10)79837990. doi:10.1063/1.362349 34. Kang H S Kang J S Kim J W Lee S Y Annealing effecton the property of ultraviolet and green emissions of ZnO thin filmsJ Appl Phys 2004 95(3)12461250. doi:10.1063/1.1633343
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.