Journal home Browse Online first

Online first

The manuscripts published below will continue to be available from this page until they are assigned to an issue.
  • Select all
  • Tianshu Han,Wei Wei,Wenbo Jiang,Yiding Geng,Zijie Liu,Ruiming Yang,Chenrun Jin,Yating Lei,Xinyi Sun,Jiaxu Xu,Chen Juan,Changhao Sun,
    PDF
    The concept of precision nutrition was first proposed almost a decade ago. Current research in precision nutrition primarily focuses on comprehending individualized variations in response to dietary intake, with little attention being given to other crucial aspects of precision nutrition. Moreover, there is a dearth of comprehensive review studies that portray the landscape and framework of precision nutrition. This review commences by tracing the historical trajectory of nutritional science, with the aim of dissecting the challenges encountered in nutrition science within the new era of disease profiles. This review also deconstructs the field of precision nutrition into four key components: the proposal of the theory for individualized nutritional requirement phenotypes; the establishment of precise methods for measuring dietary intake and evaluating nutritional status; the creation of multidimensional nutritional intervention strategies that address the aspects of what, how, and when to eat; and the construction of a pathway for the translation and integration of scientific research into healthcare practices, utilizing artificial intelligence and information platforms. Incorporating these four components, this review further discusses prospective avenues that warrant exploration to achieve the objective of enhancing health through precision nutrition.
  • Wuwei Zou,Yan Wang,Enze Tian,Jiaze Wei,Jinqing Peng,Jinhan Mo,
    PDF
    Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics. Inherent conflicts exist among architectural aesthetics, building energy consumption, and solar energy harvesting for glazed facades. In this study, we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope (dvPVBE) that offers extraordinary flexibility with weather-responsive slat angles and blind positions, superior architectural aesthetics, and notable energy-saving potential. Three hierarchical control strategies were proposed for different scenarios of the dvPVBE: power generation priority (PGP), natural daylight priority (NDP), and energy-saving priority (ESP). Moreover, the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE. An office room integrated with a dvPVBE was modeled using EnergyPlus. The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies. The results indicate that the application of dvPVBEs in Beijing can provide up to 131% of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226% compared with static photovoltaic (PV) blinds. The concept of this novel dvPVBE offers a viable approach by which the thermal load, daylight penetration, and energy generation can be effectively regulated.
  • Cai Lu,Si-Nan Lu,Di Di,Wei-Wei Tao,Lu Fan,Jin-Ao Duan,Ming Zhao,Chun-Tao Che,
    PDF
    The anticancer potential of quassinoids has attracted a great deal of attention for decades, and scientific data revealing their possible applications in cancer management are continuously increasing in the literature. Aside from the potent cytotoxic and antitumor properties of these degraded triterpenes, several quassinoids have exhibited synergistic effects with anticancer drugs. This article provides an overview of the potential anticancer properties of quassinoids, including their cytotoxic and antitumor activities, mechanisms of action, safety evaluation, and potential benefits in combination with anticancer drugs.
  • Peng Wang,Liping Qian,Huixin Liang,Jianhao Huang,Jing Jin,Chunmei Xie,Bin Xue,Jiancheng Lai,Yibo Zhang,Lifeng Jiang,Lan Li,Qing Jiang,
    PDF
    Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin. However, the mechanical properties of hydrogel scaffolds and natural skin are substantially different. Here, we developed a polyvinyl alcohol (PVA)/acrylamide based interpenetrating network (IPN) hydrogel that was surface modified with polydopamine (PDA) and termed Dopa-gel. The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions. Furthermore, a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing. The results showed that the interpenetration of PVA, alginate, and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel. Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors. In an in vivo model, Dopa-gel treatment accelerated wound closure, increased vascularization, and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area. Mechanistically, the focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel. Additionally, proangiogenic factors can be induced through Rho-associated kinase-2 (ROCK-2)/vascular endothelial growth factor (VEGF)-mediated paracrine secretion under tensile stress conditions. Taken together, these findings suggest that the multifunctional Dopa-gel, which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties, is a promising scaffold for skin tissue regeneration.
  • Shen Qu,Yuchen Hu,Renke Wei,Ke Yu,Zhouyi Liu,Qi Zhou,Chenchen Wang,Lujing Zhang,
    PDF
    Reducing greenhouse gas (GHG) emissions to address climate change is a global consensus, and municipal wastewater treatment plants (MWWTPs) should lead the way in low-carbon sustainable development. However, achieving effluent discharge standards often requires considerable energy and chemical consumption during operation, resulting in significant carbon footprints. In this study, GHG emissions are systematically accounted for, and the driving factors of carbon footprint growth in China’s MWWTPs are explored. In 2020, a total of 41.9 million tons (Mt) of carbon dioxide equivalent (CO2-eq) were released by the sector, with nearly two-thirds being indirect emissions resulting from energy and material usage. The intensity of electricity, carbon source, and phosphorus removing agent consumption increasingly influence carbon footprint growth over time. Through statistical inference, benchmarks for electricity and chemical consumption intensity are established across all MWWTPs under various operational conditions, and the potential for mitigation through more efficient energy and material utilization is calculated. The results suggest that many MWWTPs offer significant opportunities for emission reduction. Consequently, empirical decarbonization measures, including intelligent device control, optimization of aeration equipment, energy recovery initiatives, and other enhancements to improve operational and carbon efficiency, are recommended.
  • Qi Zhou,Shen Qu,Miaomiao Liu,Jianxun Yang,Jia Zhou,Yunlei She,Zhouyi Liu,Jun Bi,
    PDF
    Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises. This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sustainability. The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks. It includes production, consumption, and transportation agents, attributing economic features to supply chain components and capturing their interactions. It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors. By coupling high spatial-temporal resolution firm-level data from 18 916 chemical enterprises, this study investigates the economic and environmental impacts of an environmental policy resulting in the closure of 1 800 chemical enterprises over three years. The results revealed a significant economic loss of 25.8 billion USD, ranging from 23.8 USD to 31.8 billion USD. Notably, over 80% of this loss was attributed to supply chain propagation. Counterfactual analyses indicated that implementing a staggered shutdown strategy prevented 18.8% of supply chain losses, highlighting the importance of a gradual policy implementation to prevent abrupt supply chain disruptions. Furthermore, the study highlights the effectiveness of a multi-objective policy design in reducing economic losses (about 29%) and environmental risks (about 40%), substantially enhancing the efficiency of the environmental policy. The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.
  • Yang Chen,Zhenduo Wu,Longlong Fan,Rajamani Krishna,Hongliang Huang,Yi Wang,Qizhao Xiong,Jinping Li,Libo Li,
    PDF
    The direct one-step separation of polymer-grade C2H4 from complex light hydrocarbon mixtures has high industrial significance but is very challenging. Herein, an ethylene-adsorption-weakening strategy is applied for precise regulation of the pore geometry of four tailor-made metal–organic frameworks (MOFs) with pillar-layered structures, dubbed TYUT-10/11/12/13. Based on its pore geometry design and functional group regulation, TYUT-12 exhibits exceptional selective adsorption selectivity toward C3H8, C3H6, C2H6, C2H2, and CO2 over C2H4; its C2H6/C2H4 adsorption selectivity reaches 4.56, surpassing the record value of 4.4 by Fe2(O2)(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate). The weak π–π stacking binding affinity toward C2H4 in TYUT-12 is clearly demonstrated through a combination of neutron powder diffraction measurements and theoretical calculations. Breakthrough experiments demonstrate that C2H4 can be directly obtained from binary, ternary, quaternary, and six-component light hydrocarbon mixtures with over 99.95% purity.
  • Xiawan Zheng,Kathy Leung,Xiaoqing Xu,Yu Deng,Yulin Zhang,Xi Chen,Chung In Yau,Kenny WK Hui,Eddie Pak,Ho-Kwong Chui,Ron Yang,Hein Min Tun,Gabriel M. Leung,Joseph T. Wu,Malik Peiris,Leo L.M. Poon,Tong Zhang,
    PDF
    Wastewater surveillance can leverage its wide coverage, population-based sampling, and high monitoring frequency to capture citywide pandemic trends independent of clinical surveillance. Here we conducted a 9-month daily wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from 12 wastewater treatment plants (WWTPs), covering approximately 80% of the population, to monitor infection dynamics in Hong Kong. We found that the SARS-CoV-2 virus concentration in wastewater was correlated with the daily number of reported cases and reached two pandemic peaks three days earlier during the study period. In addition, two different methods were established to estimate the prevalence/incidence rates from wastewater measurements. The estimated results from wastewater were consistent with findings from two independent citywide clinical surveillance programmes (rapid antigen test (RAT) surveillance and serology surveillance), but higher than the cases number reported by the Centre for Health Protection (CHP) of Hong Kong. Moreover, the effective reproductive number (Rt) was estimated from wastewater measurements to reflect both citywide and regional transmission dynamics. Our findings demonstrate that large-scale intensive wastewater surveillance from WWTPs provides cost-effective and timely public health information, especially when the clinical surveillance is inadequate and costly. This approach also provides insights into pandemic dynamics at higher spatiotemporal resolutions, facilitating the formulation of effective control policies and targeted resource allocation.
  • Qingbai Wu,Wei Ma,Yuanming Lai,Guodong Cheng,
    PDF
    The thawing and warming of ice-rich permafrost present a considerable threat to the long-term stability of the Qinghai–Xizang Railway (QXR) on the roof of the world—that is, the Qinghai–Xizang Plateau (QXP). In this review, we explore the extent of the observed permafrost degradation and embankment damage under the coupled impacts of climate change and engineering construction. The ice-rich permafrost beneath the embankment presents a substantial threat to the thermal–mechanical stability of the embankment due to the permafrost’s accelerated and amplified degradation. The observed embankment deformation has a potential high risk of thaw settlement, especially for 656 embankment-bridge sections, whose potential high risk of thaw settlement may be as great as 25%. Several techniques for roadbed cooling can be used to alleviate these impacts, including crushed rock structure embankments (CRSEs), thermosyphons, and reinforcement measures, which have been demonstrated to be successful in cooling the underlying permafrost and stabilizing an embankment. Under future climate change and permafrost degradation, however, the QXR still faces a high risk of embankment damage caused by permafrost degradation and requires more effective methods to reinforce the thermal–mechanical stability of permafrost. Therefore, a better understanding of such high-risk regions is needed, and roadbed cooling techniques will require further adaption in order to address the issues brought by climate change.
  • Yun Wei,Xin Yang,Xiao Xiao,Zhiao Ma,Tianlei Zhu,Fei Dou,Jianjun Wu,Anthony Chen,Ziyou Gao,
    PDF
    As the scale of urban rail transit (URT) networks expands, the study of URT resilience is essential for safe and efficient operations. This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research. First, URT resilience is defined by three primary abilities: absorption, resistance, and recovery, and four properties: robustness, vulnerability, rapidity, and redundancy. Then, the metrics and assessment approaches for URT resilience were summarized. The metrics are divided into three categories: topology-based, characteristic-based, and performance-based, and the assessment methods are divided into four categories: topological, simulation, optimization, and data-driven. Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods, such as conventional complex network analysis and operations optimization theory, with new techniques like big data and intelligent computing technology, to accurately assess URT resilience. Finally, five potential trends and directions for future research were identified: analyzing resilience based on multisource data, optimizing train diagram in multiple scenarios, accurate response to passenger demand through new technologies, coupling and optimizing passenger and traffic flows, and optimal line design.