Current Challenges for the Practical Application of Electroencephalography-Based Brain–Computer Interfaces

Minpeng Xu, Feng He, Tzyy-Ping Jung, Xiaosong Gu, Dong Ming

PDF(265 KB)
PDF(265 KB)
Engineering ›› 2021, Vol. 7 ›› Issue (12) : 1710-1712. DOI: 10.1016/j.eng.2021.09.011

Current Challenges for the Practical Application of Electroencephalography-Based Brain–Computer Interfaces

Author information +
History +

Cite this article

Download citation ▾
Minpeng Xu, Feng He, Tzyy-Ping Jung, Xiaosong Gu, Dong Ming. Current Challenges for the Practical Application of Electroencephalography-Based Brain–Computer Interfaces. Engineering, 2021, 7(12): 1710‒1712 https://doi.org/10.1016/j.eng.2021.09.011

References

[[1]]
Vidal JJ. Toward direct brain–computer communication. Annu Rev Biophys Bioeng 1973;2(1):157–80.
[[2]]
Wolpaw JR, Millán JDR, Ramsey NF. Brain–computer interfaces: definitions and principles. Handb Clin Neurol 2020;168:15–23.
[[3]]
Panicker RC, Puthusserypady S, Sun Y. An asynchronous P300 BCI with SSVEPbased control state detection. IEEE Trans Biomed Eng 2011;58(6):1781–8.
[[4]]
Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S. High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci USA 2015;112(44): E6058–67.
[[5]]
Jiang J, Yin E, Wang C, Xu M, Ming D. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs. J Neural Eng 2018;15 (4):046025.
[[6]]
Xu M, Han J, Wang Y, Jung TP, Ming D. Implementing over 100 command codes for a high-speed hybrid brain–computer interface using concurrent P300 and SSVEP features. IEEE Trans Biomed Eng 2020;67(11):3073–82.
[[7]]
Xu M, Xiao X, Wang Y, Qi H, Jung TP, Ming D. A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng 2018;65(5):1166–75.
[[8]]
Siddharth, Patel AN, Jung TP, Sejnowski TJ. A wearable multi-modal biosensing system towards real-world applications. IEEE Trans Biomed Eng 2019;66(4):1137–47.
[[9]]
Wang K, Xu M, Wang Y, Zhang S, Chen L, Ming D. Enhance decoding of premovement EEG patterns for brain–computer interfaces. J Neural Eng 2020;17 (1):016033.
[[10]]
Xiao X, Xu M, Jin J, Wang Y, Jung TP, Ming D. Discriminative canonical pattern matching for single-trial classification of ERP components. IEEE Trans Biomed Eng 2020;67(8):2266–75.
[[11]]
Xu M, Qi H, Wan B, Yin T, Liu Z, Ming D. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. J Neural Eng 2013;10(2):026001.
[[12]]
The group on Neurotechnologies for Brain–Machine Interfacing. Standards roadmap: neurotechnologies for brain–machine interfacing. Report. New York: IEEE; 2020 Feb. Report No.: IC17-007.
[[13]]
Mei J, Xu M, Wang L, Ke Y, Wang Y, Jung TP, et al. Using SSVEP-BCI to continuous control a Quadcopter with 4-DOF motions. In: Proceedings of 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Jun 20–24; Montreal, QC, Canada. New York: IEEE; 2020.
[[14]]
Xu L, Xu M, Ke Y, An X, Liu S, Ming D. Cross-dataset variability problem in EEG decoding with deep learning. Front Hum Neurosci 2020;14:103.
[[15]]
Chiang KJ, Wei CS, Nakanishi M, Jung TP. Cross-subject transfer learning improves the practicality of real-world applications of brain–computer interfaces. In: Proceedings of 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); 2019 Mar 20–23; San Francisco, CA, USA. New York: IEEE; 2019.
[[16]]
Wei CS, Lin YP, Wang YT, Lin CT, Jung TP. A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection. NeuroImage 2018;174:407–19.
PDF(265 KB)

Accesses

Citations

Detail

Sections
Recommended

/