Cellulose-based smart materials: Novel synthesis techniques, properties, and applications in energy storage and conversion devices
Pariksha Bishnoi, Samarjeet Singh Siwal, Vinod Kumar, Vijay Kumar Thakur
Cellulose-based smart materials: Novel synthesis techniques, properties, and applications in energy storage and conversion devices
There has been a significant scope toward the cutting-edge investigations in hierarchical carbon nanostructured electrodes originating from cellulosic materials, such as cellulose nanofibers, available from natural cellulose and bacterial cellulose. Elements of energy storage systems (ESSs) are typically established upon inorganic/metal mixtures, carbonaceous implications, and petroleum-derived hydrocarbon chemicals. However, these conventional substances may need help fulfilling the ever-increasing needs of ESSs. Nanocellulose has grown significantly as an impressive 1D element due to its natural availability, eco-friendliness, recyclability, structural identity, simple transformation, and dimensional durability. Here, in this review article, we have discussed the role and overview of cellulose-based hydrogels in ESSs. Additionally, the extraction sources and solvents used for dissolution have been discussed in detail. Finally, the properties (such as self-healing, transparency, strength and swelling behavior), and applications (such as flexible batteries, fuel cells, solar cells, flexible supercapacitors and carbon-based derived from cellulose) in energy storage devices and conclusion with existing challenges have been updated with recent findings.
batteries / cellulose-based materials / energy storage devices / fuel cells / hydrogels / supercapacitors
[1] |
Scheibe M, Urbaniak M, Bledzki A. Application of natural (plant) fibers particularly hemp fiber as reinforcement in hybrid polymer composites - Part II. Volume of hemp cultivation, its application and sales market. J Nat Fibers. 2023;20(2):2251682.
CrossRef
Google scholar
|
[2] |
Taufik D, Reinders MJ, Molenveld K, Onwezen MC. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci Total Environ. 2020;705:135820.
CrossRef
Google scholar
|
[3] |
Santos RF, Ribeiro JCL, Franco de Carvalho JM, et al. Nanofibrillated cellulose and its applications in cement-based composites: a review. Construct Build Mater. 2021;288:123122.
CrossRef
Google scholar
|
[4] |
Rana AK, Mostafavi E, Alsanie WF, Siwal SS, Thakur VK. Cellulose-based materials for air purification: a review. Ind Crop Prod. 2023;194:116331.
CrossRef
Google scholar
|
[5] |
Liu K, DuH, Zheng T, et al. Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr Polym. 2021;259:117740.
CrossRef
Google scholar
|
[6] |
Niu Q, Peng Q, Lu L, et al. Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS Nano. 2018;12:11860-11870.
CrossRef
Google scholar
|
[7] |
Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J. 2017;88:373-392.
CrossRef
Google scholar
|
[8] |
Shi Z, Ullah MW, Liang X, Yang G. Recent developments in synthesis, properties, and biomedical applications of cellulose-based hydrogels. In: Yang G, Ullah MW, Shi Z, eds. Nanocellulose: Synthesis, Structure, Properties and Applications. World Scientific;2020:121-153.
CrossRef
Google scholar
|
[9] |
Alven S, Aderibigbe BA. Chitosan and cellulose-based hydrogels for wound management. Int J Mol Sci. 2020;21(24):9656.
CrossRef
Google scholar
|
[10] |
Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater. 2018;7(3):153-174.
CrossRef
Google scholar
|
[11] |
Cova TF, Murtinho D, Pais AACC, Valente AJM. Combining cellulose and cyclodextrins: fascinating designs for materials and pharmaceutics. Front Chem. 2018;6.
CrossRef
Google scholar
|
[12] |
Garcia-Valdez O, Champagne P, Cunningham MF. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci. 2018;76:151-173.
CrossRef
Google scholar
|
[13] |
Liu Z, Wang R, Ma Q, et al. Application of cellulose-based hydrogel electrolytes in flexible batteries. Carbon Neutralization. 2022;1(2):126-139.
CrossRef
Google scholar
|
[14] |
Chen X, Zhu H, Liu C, et al. Role of mesoporosity in cellulose fibers for paper-based fast electrochemical energy storage. J Mater Chem A. 2013;1(28):8201.
CrossRef
Google scholar
|
[15] |
Chen C, Hong X, Chen A, et al. Electrochemical properties of poly(aniline-co-N-methylthionine) for zinc-conducting polymer rechargeable batteries. Electrochim Acta. 2016;190:240-247.
CrossRef
Google scholar
|
[16] |
Chen C, Gan Z, Xu C, Lu L, Liu Y, Gao Y. Electrosynthesis of poly(aniline-co-azure B) for aqueous rechargeable zincconducting polymer batteries. Electrochim Acta. 2017;252:226-234.
CrossRef
Google scholar
|
[17] |
Kaur H, Siwal SS, Kumar V, Thakur VK. Deep eutectic solvents toward the detection and extraction of neurotransmitters: an emerging paradigm for biomedical applications. Ind Eng Chem Res. 2023;62:18906. https://doi.org/10.1021/acs.iecr.3c00410
|
[18] |
Hokkanen S, Bhatnagar A, Sillanpää M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016;91:156-173.
CrossRef
Google scholar
|
[19] |
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-organic framework-based materials for wastewater treatment: superior adsorbent materials for the removal of hazardous pollutants. ACS Omega. 2023;8(10):9004-9030.
CrossRef
Google scholar
|
[20] |
Mishra K, Siwal SS, Nayaka SC, Guan Z, Thakur VK. Waste-tochemicals: green solutions for bioeconomy markets. Sci Total Environ. 2023;887:164006.
CrossRef
Google scholar
|
[21] |
Siwal SS, Sheoran K, Mishra K, et al. Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: future perspectives. Chemosphere. 2022;293:133542.
CrossRef
Google scholar
|
[22] |
Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag. 2018;227:395-405.
CrossRef
Google scholar
|
[23] |
Sayyed AJ, Pinjari DV, Sonawane SH, Bhanvase BA, Sheikh J, Sillanpää M. Cellulose-based nanomaterials for water and wastewater treatments: a review. J Environ Chem Eng. 2021;9(6):106626.
CrossRef
Google scholar
|
[24] |
Mishra K, Devi N, Siwal SS, Gupta VK, Thakur VK. Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: fundamentals, designing, and prospects. Adv Sustain Syst. 2023;7(8):2300095.
CrossRef
Google scholar
|
[25] |
Li T, Chen C, Brozena AH, et al. Developing fibrillated cellulose as a sustainable technological material. Nature. 2021;590(7844):47-56.
CrossRef
Google scholar
|
[26] |
Rana AK, Gupta VK, Saini AK, Voicu SI, Abdellattifaand MH, Thakur VK. Water desalination using nanocelluloses/cellulose derivatives based membranes for sustainable future. Desalination. 2021;520:115359.
CrossRef
Google scholar
|
[27] |
Rana AK, Mishra YK, Gupta VK, Thakur VK. Sustainable materials in the removal of pesticides from contaminated water: perspective on macro to nanoscale cellulose. Sci Total Environ. 2021;797:149129.
CrossRef
Google scholar
|
[28] |
Voicu SI, Thakur VK. Aminopropyltriethoxysilane as a linker for cellulose-based functional materials: new horizons and future challenges. Curr Opin Green Sustainable Chem. 2021;30:100480.
CrossRef
Google scholar
|
[29] |
Mishra K, Siwal SS, Sithole T, Singh N, Hart P, Thakur VK. Biorenewable materials for water remediation: the central role of cellulose in achieving sustainability. J Bioresour Bioprod.2023. https://doi.org/10.1016/j.jobab.2023.12.002
|
[30] |
Varghese AG, Paul SA, Latha MS. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ Chem Lett. 2019;17(2):867-877.
CrossRef
Google scholar
|
[31] |
Mishra K, Singh Siwal S, Kumar Saini A, Thakur VK. Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production. Fuel. 2023;332:126169.
CrossRef
Google scholar
|
[32] |
Mantovan J, Giraldo GAG, Marim BM, Garcia PS, Baron AM, Mali S. Cellulose-based materials from orange bagasse employing environmentally friendly approaches. Biomass Convers Biorefinery. 2023;13(3):1633-1644.
CrossRef
Google scholar
|
[33] |
Zhang T, Yang L, Yan X, Ding X. Recent advances of cellulosebased materials and their promising application in sodiumion batteries and capacitors. Small. 2018;14(47):1802444.
CrossRef
Google scholar
|
[34] |
Siwal SS, Mishra K, Saini AK, Alsanie WF, Kovalcik A, Thakur VK. Additive manufacturing of bio-based hydrogel composites: recent advances. J Polym Environ. 2022;30(11):4501-4516.
CrossRef
Google scholar
|
[35] |
Eichhorn SJ, Etale A, Wang J, et al. Current international research into cellulose as a functional nanomaterial for advanced applications. J Mater Sci. 2022;57(10):5697-5767.
CrossRef
Google scholar
|
[36] |
Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105-121.
CrossRef
Google scholar
|
[37] |
Trache D, Tarchoun AF, Derradji M, et al. Nanocellulose: from fundamentals to advanced applications. Front Chem. 2020;8.
CrossRef
Google scholar
|
[38] |
Kono H, Sogame Y, Purevdorj U-E, Ogata M, Tajima K. Bacterial cellulose nanofibers modified with quaternary ammonium salts for antimicrobial applications. ACS Appl Nano Mater. 2023;6:4854-4863.
CrossRef
Google scholar
|
[39] |
Kim J-H, Shim BS, Kim HS, et al. Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf-Green Technol. 2015;2:197-213.
CrossRef
Google scholar
|
[40] |
Norfarhana AS, Ilyas RA, Nazrin A, et al. Nanocellulose: from biosources to nanofiber and their applications. Phys Sci Rev. 2023. https://doi.org/10.1515/psr-2022-0008
|
[41] |
Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G. Nanocellulose: extraction and application. Carbon Resour Convers. 2018;1:32-43.
CrossRef
Google scholar
|
[42] |
Dufresne A. Nanocellulose: a new ageless bionanomaterial. Mater Today. 2013;16(6):220-227.
CrossRef
Google scholar
|
[43] |
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941.
CrossRef
Google scholar
|
[44] |
Xu Y, Atrens A, Stokes JR. A review of nanocrystalline cellulose suspensions: rheology, liquid crystal ordering and colloidal phase behaviour. Adv Colloid Interface Sci. 2020;275:102076.
CrossRef
Google scholar
|
[45] |
Norrrahim MN, Mohd Kasim NA, Knight VF, et al. Emerging developments regarding nanocellulose-based membrane filtration material against microbes. Polymers. 2021;13(19):3249.
CrossRef
Google scholar
|
[46] |
Abitbol T, Rivkin A, Cao Y, et al. Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol. 2016;39:76-88.
CrossRef
Google scholar
|
[47] |
Ou L, Dou C, Yu J-H, et al. Techno-economic analysis of sugar production from lignocellulosic biomass with utilization of hemicellulose and lignin for high-value co-products. Biofuels Bioprod Biorefining. 2021;15(2):404-415.
CrossRef
Google scholar
|
[48] |
Jamshaid A, Hamid A, Muhammad N, et al. Cellulose-based materials for the removal of heavy metals from wastewater -an overview. ChemBioEng Rev. 2017;4:240-256.
CrossRef
Google scholar
|
[49] |
Siwal SS, Kaur H, Deng R, Zhang Q. A review on electrochemical techniques for metal recovery from waste resources. Curr Opin Green Sustainable Chem. 2023;39:100722.
CrossRef
Google scholar
|
[50] |
Mantovan J, Yamashita F, Mali S. Modification of orange bagasse with reactive extrusion to obtain cellulose-based materials. Polysaccharides. 2022;3(2):401-410.
CrossRef
Google scholar
|
[51] |
Mariñ MA, Rezende CA, Tasic L. A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose. 2018;25(10):5739-5750.
CrossRef
Google scholar
|
[52] |
Suzuki S, Hikita H, Hernandez SC, Wada N, Takahashi K. Direct conversion of sugarcane bagasse into an injectionmoldable cellulose-based thermoplastic via homogeneous esterification with mixed acyl groups. ACS Sustainable Chem Eng. 2021;9(17):5933-5941.
CrossRef
Google scholar
|
[53] |
Wang J, Wang L, Gardner DJ, Shaler SM, Cai Z. Towards a cellulose-based society: opportunities and challenges. Cellulose. 2021;28(8):4511-4543.
CrossRef
Google scholar
|
[54] |
Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021;10:935-952.
CrossRef
Google scholar
|
[55] |
Zhao Y, Zhang X, Wang Y, et al. In situ cross-linked polysaccharide hydrogel as extracellular matrix mimics for antibiotics delivery. Carbohydr Polym. 2014;105:63-69.
CrossRef
Google scholar
|
[56] |
Bao Y, Ma J, Li N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym. 2011;84(1):76-82.
CrossRef
Google scholar
|
[57] |
Tang F, Zhou W, Chen M, Chen J, Xu J. Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries. Electrochim Acta. 2019;328:135137.
CrossRef
Google scholar
|
[58] |
Das AK, Islam MN, Ghosh RK, Maryana R. Cellulose-based bionanocomposites in energy storage applications-a review. Heliyon. 2023;9(1):e13028.
CrossRef
Google scholar
|
[59] |
Tan Y, Li Q, Lu Z, Yang C, Qian W, Yu F. Porous nanocomposites by cotton-derived carbon/NiO with high performance for lithium-ion storage. J Alloys Compd. 2021;874:159788.
CrossRef
Google scholar
|
[60] |
Sun X, Li M, Ren S, et al. Zeolitic imidazolate frameworkcellulose nanofiber hybrid membrane as Li-ion battery separator: basic membrane property and battery performance. J Power Sources. 2020;454:227878.
CrossRef
Google scholar
|
[61] |
Wang D-C, Yu H-Y, Qi D, et al. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors. ACS Appl Mater Interfaces. 2019;11(27):24435-24446.
CrossRef
Google scholar
|
[62] |
Pedro SN, Freire CSR, Silvestre AJD, Freire MG. The role of ionic liquids in the pharmaceutical field: an overview of relevant applications. Int J Mol Sci.2020. https://doi.org/10.1021/acsami.9b06527
|
[63] |
Haron GAS, Mahmood H, Noh MH, Alam MZ, Moniruzzaman M. Ionic liquids as a sustainable platform for nanocellulose processing from bioresources: overview and current status. ACS Sustainable Chem Eng. 2021;9(3):1008-1034.
CrossRef
Google scholar
|
[64] |
Chang C, Zhang L. Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym. 2011;84(1):40-53.
CrossRef
Google scholar
|
[65] |
Xu M, Huang Q, Wang X, Sun R. Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Ind Crop Prod. 2015;70:56-63.
CrossRef
Google scholar
|
[66] |
Shen X, Shamshina JL, Berton P, et al. Comparison of hydrogels prepared with ionic-liquid-isolated vs commercial chitin and cellulose. ACS Sustainable Chem Eng. 2016;4(2):471-480.
CrossRef
Google scholar
|
[67] |
Sayyed AJ, Deshmukh NA, Pinjari DV. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose. 2019;26(5):2913-2940.
CrossRef
Google scholar
|
[68] |
Sayyed AJ, Mohite LV, Deshmukh NA, Pinjari DV. Structural characterization of cellulose pulp in aqueous NMMO solution under the process conditions of lyocell slurry. Carbohydr Polym. 2019;206:220-228.
CrossRef
Google scholar
|
[69] |
Dogan H, Hilmioglu ND. Dissolution of cellulose withNMMO by microwave heating. Carbohydr Polym. 2009;75(1):90-94.
CrossRef
Google scholar
|
[70] |
Jadhav S, Lidhure A, Thakre S, Ganvir V. Modified Lyocell process to improve dissolution of cellulosic pulp and pulp blends in NMMO solvent. Cellulose. 2021;28(2):973-990.
CrossRef
Google scholar
|
[71] |
Xiong B, Zhao P, Hu K, Zhang L, Cheng G. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose. 2014;21(3):1183-1192.
CrossRef
Google scholar
|
[72] |
Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci. 2005;5(6):539-548.
CrossRef
Google scholar
|
[73] |
Ejeromedoghene O, Orege JI, Oderinde O, et al. Deep eutectic solvent-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J. 2022;181:111711.
CrossRef
Google scholar
|
[74] |
Nahar Y, Thickett SC. Greener, faster, stronger: the benefits of deep eutectic solvents in polymer and materials science. Polymers. 2021;13(3):447.
CrossRef
Google scholar
|
[75] |
Ren H, Chen C, Wang Q, Zhao D, Guo S. Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose. Bioresources. 2016;11(2):2016.
CrossRef
Google scholar
|
[76] |
Morais ES, Lopes AMdC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules. 2020;25(16):3652.
CrossRef
Google scholar
|
[77] |
Lynam JG, Kumar N, Wong MJ. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose;thermal stability; and density. Bioresour Technol. 2017;238:684-689.
CrossRef
Google scholar
|
[78] |
Ciolacu DE, Suflet DM. Cellulose-based hydrogels for medical/pharmaceutical applications. In: Popa V, Volf I, eds. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. 1st ed. Elsevier;2018:401-440.
CrossRef
Google scholar
|
[79] |
Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7(3):843-855.
CrossRef
Google scholar
|
[80] |
Guan Y, Zhang B, Bian J, Peng F, Sun R-C. Nanoreinforced hemicellulose-based hydrogels prepared by freeze-thaw treatment. Cellulose. 2014;21(3):1709-1721.
CrossRef
Google scholar
|
[81] |
Irvin CW, Satam CC, Liao J, et al. Synergistic reinforcement of composite hydrogels with nanofiber mixtures of cellulose nanocrystals and chitin nanofibers. Biomacromolecules. 2021;22(2):340-352.
CrossRef
Google scholar
|
[82] |
Guan Y, Bian J, Peng F, Zhang X-M, Sun R-C. High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydr Polym. 2014;101:272-280.
CrossRef
Google scholar
|
[83] |
Song G, Zhang L, He C, Fang D-C, Whitten PG, Wang H. Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules. 2013;46(18):7423-7435.
CrossRef
Google scholar
|
[84] |
Butylina S, Geng S, Oksman K. Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique. Eur Polym J. 2016;81:386-396.
CrossRef
Google scholar
|
[85] |
Wang Y, Zhang X, Qiu D, Li Y, Yao L, Duan J. Ultrasonic assisted microwave synthesis of poly (Chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel. Ultrason Sonochem. 2018;40:714-719.
CrossRef
Google scholar
|
[86] |
Fekete T, Borsa J, Takács E, Wojnárovits L. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose. 2014;21(6):4157-4165.
CrossRef
Google scholar
|
[87] |
Yu AC, Chen H, Chan D, et al. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc Natl Acad Sci USA. 2016;113(50):14255-14260.
CrossRef
Google scholar
|
[88] |
Qi X, Tong X, Pan W, Zeng Q, You S, Shen J. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J Clean Prod. 2021;315:128221.
CrossRef
Google scholar
|
[89] |
Li R, Wu G. Preparation of polysaccharide-based hydrogels via radiation technique. In: Chen Y, ed. Hydrogels Based on Natural Polymers. 1st ed. Elsevier;2020:119-148.
CrossRef
Google scholar
|
[90] |
Rizwan M, Rubina Gilani S, Iqbal Durani A, Naseem S. Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res. 2021;33:15-40.
CrossRef
Google scholar
|
[91] |
Suo A, Qian J, Yao Y, Zhang W. Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci. 2007;103(3):1382-1388.
CrossRef
Google scholar
|
[92] |
Mavila S, Eivgi O, Berkovich I, Lemcoff NG. Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles. Chem Rev. 2016;116(3):878-961.
CrossRef
Google scholar
|
[93] |
Ullah F, Javed F, Ibrar M, Khan A, Nurul AA, Akil HM. Processing strategies of chitosan-built nano-hydrogel as smart drug carriers. In: Thomas S, Balakrishnan P, eds. Nanoscale Processing. Elsevier;2021:467-490.
CrossRef
Google scholar
|
[94] |
Brooks B. Suspension polymerization processes. Chem Eng Technol. 2010;33(11):1737-1744.
CrossRef
Google scholar
|
[95] |
Qureshi MA, Nishat N, Jadoun S, Ansari MZ. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: a review. Carbohydr Polym Technol Appl. 2020;1:100014.
CrossRef
Google scholar
|
[96] |
Birman T, Seliktar D. Injectability of biosynthetic hydrogels: consideration for minimally invasive surgical procedures and 3D bioprinting. Adv Funct Mater. 2021;31(29):2100628.
CrossRef
Google scholar
|
[97] |
Liu G, Ding Z, Yuan Q, Xie H, Gu Z. Multi-layered hydrogels for biomedical applications. Front Chem. 2018;6.
CrossRef
Google scholar
|
[98] |
Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB. Synthesis and characterization of carboxymethylcellulosemethacrylate hydrogel cell scaffolds. Polymers. 2010;2(3):252-264.
CrossRef
Google scholar
|
[99] |
Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001;22:3045-3051.
CrossRef
Google scholar
|
[100] |
Coates EE, Riggin CN, Fisher JP. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res. 2013;101A(7):1962-1970.
CrossRef
Google scholar
|
[101] |
Wang H, Mei M, Jiang Y, Li Q, Zhang X, Wu S. A study on the preparation of polymer/montmorillonite nano-composite materials by photo-polymerization. Polym Int. 2002;51(1):7-11.
CrossRef
Google scholar
|
[102] |
Meng Y, Lu J, Cheng Y, Li Q, Wang H. Lignin-based hydrogels: a review of preparation, properties, and application. Int J Biol Macromol. 2019;135:1006-1019.
CrossRef
Google scholar
|
[103] |
Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polym J. 2019;51(10):945-953.
CrossRef
Google scholar
|
[104] |
Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: design and applications. Materials. 2009;2(2):353-373.
CrossRef
Google scholar
|
[105] |
Cass P, Knower W, Pereeia E, Holmes NP, Hughes T. Preparation of hydrogels via ultrasonic polymerization. Ultrason Sonochem. 2010;17(2):326-332.
CrossRef
Google scholar
|
[106] |
Ghorbani S, Eyni H, Bazaz SR, et al. Hydrogels based on cellulose and its derivatives: applications, synthesis, and characteristics. Polym Sci. 2018;60(6):707-722.
CrossRef
Google scholar
|
[107] |
Zeng H, Liu B, Li J, et al. Efficient separation of bagasse lignin by freeze-thaw-assisted p-toluenesulfonic acid pretreatment. Bioresour Technol. 2022;351:126951.
CrossRef
Google scholar
|
[108] |
El Salmawi KM. Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. J Macromol Sci, Part A. 2007;44(6):619-624.
CrossRef
Google scholar
|
[109] |
Hassan CM, Peppas NA. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Chang JY, Godovsky DY, Han M et al. eds. Biopolymers · PVA Hydrogels, Anionic Polymerisation Nanocomposites. Springer Berlin Heidelberg;2000:37-68.
|
[110] |
Thakur S, Verma A, Kumar V, et al. Cellulosic biomass-based sustainable hydrogels for wastewater remediation: chemistry and prospective. Fuel. 2022;309:122114.
CrossRef
Google scholar
|
[111] |
Kumar A, Sood A, Agrawal G, et al. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: a review. Int J Biol Macromol. 2023;247:125606.
CrossRef
Google scholar
|
[112] |
Madamsetty VS, Vazifehdoost M, Alhashemi SH, et al. Next-generation hydrogels as biomaterials for biomedical applications: exploring the role of curcumin. ACS Omega. 2023;8(10):8960-8976.
CrossRef
Google scholar
|
[113] |
Sood A, Dev A, Das SS, et al. Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: a review. Int J Biol Macromol. 2023;232:123283.
CrossRef
Google scholar
|
[114] |
Raina N, Pahwa R, Thakur VK, Gupta M. Polysaccharidebased hydrogels: new insights and futuristic prospects in wound healing. Int J Biol Macromol. 2022;223:1586-1603.
CrossRef
Google scholar
|
[115] |
Lai W-F. Development of hydrogels with self-healing properties for delivery of bioactive agents. Mol Pharm. 2021;18(5):1833-1841.
CrossRef
Google scholar
|
[116] |
Chen X, Fan M, Tan H, et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater Sci Eng C. 2019;101:619-629.
CrossRef
Google scholar
|
[117] |
Shi L, Han Y, Hilborn J, Ossipov D. “Smar” drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium-biopolymer chemistry. Chem Commun. 2016;52(74):11151-11154.
CrossRef
Google scholar
|
[118] |
Sharma PK, Taneja S, Singh Y. Hydrazone-linkage-based self-healing and injectable xanthan-poly(ethylene glycol) hydrogels for controlled drug release and 3D cell culture. ACS Appl Mater Interfaces. 2018;10(37):30936-30945.
CrossRef
Google scholar
|
[119] |
Upadhyay A, Kandi R, Rao CP. Injectable, self-healing, and stress sustainable hydrogel of BSA as a functional biocompatible material for controlled drug delivery in cancer cells. ACS Sustainable Chem Eng. 2018;6(3):3321-3330.
CrossRef
Google scholar
|
[120] |
Phadke A, Zhang C, Arman B, et al. Rapid self-healing hydrogels. Proc Natl Acad Sci USA. 2012;109(12):4383-4388.
CrossRef
Google scholar
|
[121] |
Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD. Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 2016;18(1):53-75.
CrossRef
Google scholar
|
[122] |
Saito H, Sakurai A, Sakakibara M, Saga H. Preparation and properties of transparent cellulose hydrogels. J Appl Polym Sci. 2003;90(11):3020-3025.
CrossRef
Google scholar
|
[123] |
Ishii D, Tatsumi D, Matsumoto T, Murata K, Hayashi H, Yoshitani H. Investigation of the structure of cellulose in LiCl/DMAc solution and its gelation behavior by small-angle X-ray scattering measurements. Macromol Biosci. 2006;6(4):293-300.
CrossRef
Google scholar
|
[124] |
Abe K, Yano H. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose. 2012;19(6):1907-1912.
CrossRef
Google scholar
|
[125] |
Elsayed MM. Hydrogel preparation technologies: relevance kinetics, thermodynamics and scaling up aspects. J Polym Environ. 2019;27(4):871-891.
CrossRef
Google scholar
|
[126] |
Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous hydrogels: present challenges and future opportunities. Langmuir. 2023;39(6):2092-2111.
CrossRef
Google scholar
|
[127] |
Althans D, Enders S. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions. Mol Phys. 2014;112(17):2249-2257.
CrossRef
Google scholar
|
[128] |
Zou P, Yao J, Cui Y-N, et al. Advances in cellulose-based hydrogels for biomedical engineering: a review summary. Gels. 2022;8(6):364.
CrossRef
Google scholar
|
[129] |
Shi Y, Peng L, Yu G. Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale. 2015;7(30):12796-12806.
CrossRef
Google scholar
|
[130] |
Chan CY, Wang Z, Jia H, Ng PF, Chow L, Fei B. Recent advances of hydrogel electrolytes in flexible energy storage devices. J Mater Chem A. 2021;9(4):2043-2069.
CrossRef
Google scholar
|
[131] |
Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A. Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater. 2013;25(20):2849-2853.
CrossRef
Google scholar
|
[132] |
Gonzalez MA, Simon JR, Ghoorchian A, et al. Strong, tough, stretchable, and self-adhesive hydrogels from intrinsically unstructured proteins. Adv Mater. 2017;29(10):1604743.
CrossRef
Google scholar
|
[133] |
Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nat Rev Mater. 2017;2(7):17036.
CrossRef
Google scholar
|
[134] |
Li W, Liu J, Wei J, Yang Z, Ren C, Li B. Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives. Adv Funct Mater. 2023;33(17):2213485.
CrossRef
Google scholar
|
[135] |
Hu L, Chee PL, Sugiarto S, et al. Hydrogel-based flexible electronics. Adv Mater. 2023;35(14):2205326.
CrossRef
Google scholar
|
[136] |
Zhang W, Feng P, Chen J, Sun Z, Zhao B. Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci. 2019;88:220-240.
CrossRef
Google scholar
|
[137] |
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater. 2021;33(28):2000619.
CrossRef
Google scholar
|
[138] |
Anjali J, Jose VK, Lee J-M. Carbon-based hydrogels: synthesis and their recent energy applications. J Mater Chem A. 2019;7(26):15491-15518.
CrossRef
Google scholar
|
[139] |
Chen Z, Xu Z, Li W, et al. Cellulose-hydrogel-derived self-activated carbon/SnO2 nanocomposites for highperformance lithium storage. ACS Appl Energy Mater. 2019;2(7):5171-5182.
CrossRef
Google scholar
|
[140] |
Huang R, Wang L, Zhang Q, et al. Irradiated graphene loaded with SnO2 quantum dots for energy storage. ACS Nano. 2015;9(11):11351-11361.
CrossRef
Google scholar
|
[141] |
Zhao K, Zhang L, Xia R, et al. SnO2 quantum Dots@Graphene oxide as a high-rate and long-life anode material for lithiumion batteries. Small. 2016;12(5):588-594.
CrossRef
Google scholar
|
[142] |
Siwal SS, Zhang Q. Classification and application of redoxactive polymer materials for energy storage nano-architectonics. In: Kumar V, Sharma K, Sehgal R, Kalia S, eds. Conjugated Polymers for Next-Generation Applications. Vol 2. Woodhead Publishing;2022:91-113.
|
[143] |
Lizundia E, Costa CM, Alves R, Lanceros-Méndez S. Cellulose and its derivatives for lithium ion battery separators: a review on the processing methods and properties. Carbohydr Polym Technol Appl. 2020;1:100001.
CrossRef
Google scholar
|
[144] |
Li H, Wu D, Wu J, Dong L-Y, Zhu Y-J, Hu X. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater. 2017;29(44):1703548.
CrossRef
Google scholar
|
[145] |
Li S, Zhu W, Tang Q, et al. Mini review on cellulose-based composite separators for lithium-ion batteries: recent progress and perspectives. Energy Fuels. 2021;35(16):12938-12947.
CrossRef
Google scholar
|
[146] |
Xie W, Liu W, Dang Y, Tang A, Deng T, Qiu W. Investigation on electrolyte-immersed properties of lithium-ion battery cellulose separator through multi-scale method. J Power Sources. 2019;417:150-158.
CrossRef
Google scholar
|
[147] |
Cheng L, Huang Y, Yin S, et al. Recent advances in cellulosic materials for aqueous zinc-ion batteries: an overview. Carbohydr Polym. 2023;316:121075.
CrossRef
Google scholar
|
[148] |
Yang L, Song L, Feng Y, et al. Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. J Mater Chem A. 2020;8(25):12314-12318.
CrossRef
Google scholar
|
[149] |
Amatucci GG, Badway F, Du Pasquier A, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(8):A930.
CrossRef
Google scholar
|
[150] |
Casas X, Niederberger M, Lizundia E. A sodium-ion battery separator with reversible voltage response based on watersoluble cellulose derivatives. ACS Appl Mater Interfaces. 2020;12:29264. https://doi.org/10.1021/acsami.0c05262
|
[151] |
Mittal N, Tien S, Lizundia E, Niederberger M. Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small. 2022;18(43):2107183.
CrossRef
Google scholar
|
[152] |
Cheng M, Liu J, Wang X, et al. In-situ synthesis of Bi nanospheres anchored in 3D interconnected cellulose nanocrystal derived carbon aerogel as anode for high-performance Mg-ion batteries. Chem Eng J. 2023;451:138824.
CrossRef
Google scholar
|
[153] |
Han Y, Zhang X, Wu X, Lu C. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustainable Chem Eng. 2015;3(8):1853-1859.
CrossRef
Google scholar
|
[154] |
Pandey GP, Agrawal RC, Hashmi SA. Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solid. 2011;72(12):1408-1413.
CrossRef
Google scholar
|
[155] |
Mishra K, Devi N, Siwal SS, Thakur VK. Insight perspective on the synthesis and morphological role of the noble and non-noble metal-based electrocatalyst in fuel cell application. Appl Catal B Environ. 2023;334:122820.
CrossRef
Google scholar
|
[156] |
Muhmed SA, Nor NAM, Jaafar J, et al. Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: a review. Energy Ecol Environ. 2020;5(2):85-107.
CrossRef
Google scholar
|
[157] |
Vilela C, Morais JD, Silva ACQ, et al. Flexible nanocellulose/lignosulfonates ion-conducting separators for polymer electrolyte fuel cells. Nanomaterials. 2020;10(9):1713.
CrossRef
Google scholar
|
[158] |
Lu L-N, Luo Y-L, Liu H-J, Chen Y-X, Xiao K, Liu Z-Q. Multivalent CoSx coupled with N-doped CNTs/Ni as an advanced oxygen electrocatalyst for zinc-air batteries. Chem Eng J. 2022;427:132041.
CrossRef
Google scholar
|
[159] |
Borghei M, Laocharoen N, Kibena-Põdsepp E, et al. Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Appl Catal B Environ. 2017;204:394-402.
CrossRef
Google scholar
|
[160] |
Chen C, Su H, Lu L-N, et al. Interfacing spinel NiCO2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem Eng J. 2021;408:127814.
CrossRef
Google scholar
|
[161] |
Sun Y, Duan Y, Hao L, et al. Cornstalk-derived nitrogen-doped partly graphitized carbon as efficient metal-free catalyst for oxygen reduction reaction in microbial fuel cells. ACS Appl Mater Interfaces. 2016;8(39):25923-25932.
CrossRef
Google scholar
|
[162] |
Li Y, Lu M, Wu Y, et al. Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J Mater Chem A. 2020;8(35):18215-18219.
CrossRef
Google scholar
|
[163] |
Li R, Rao P, Luo J, et al. General method for synthesizing effective and durable electrocatalysts derived from cellulose for microbial fuel cells. ACS Appl Mater Interfaces. 2022;14(11):13369-13378.
CrossRef
Google scholar
|
[164] |
Kim H, Kwon G-h, Han SO, Robertson A. Platinum encapsulated within a bacterial nanocellulosic-graphene nanosandwich as a durable thin-film fuel cell catalyst. ACS Appl Energy Mater. 2021;4(2):1286-1293.
CrossRef
Google scholar
|
[165] |
Zhang Y, Hao N, Lin X, Nie S. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydr Polym. 2020;234:115888.
CrossRef
Google scholar
|
[166] |
Nakamura A, Ogai R, Murakami K. Development of smart window using an hydroxypropyl cellulose-acrylamide hydrogel and evaluation of weathering resistance and heat shielding effect. Sol Energy Mater Sol Cell. 2021;232:111348.
CrossRef
Google scholar
|
[167] |
Zhao B, Yue X, Tian Q, Qiu F, Li Y, Zhang T. Bio-inspired BC aerogel/PVA hydrogel bilayer gel for enhanced daytime subambient building cooling. Cellulose. 2022;29(14):7775-7787.
CrossRef
Google scholar
|
[168] |
Pang B, Jiang G, Zhou J, et al. Molecular-scale design of cellulose-based functional materials for flexible electronic devices. Adv Electron Mater. 2021;7(2):2000944.
CrossRef
Google scholar
|
[169] |
Abdallah SR, Saidani-Scott H, Benedi J. Experimental study for thermal regulation of photovoltaic panels using saturated zeolite with water. Sol Energy. 2019;188:464-474.
CrossRef
Google scholar
|
[170] |
Abdo S, Saidani-Scott H, Benedi J, Abdelrahman MA. Hydrogels beads for cooling solar panels: experimental study. Renew Energy. 2020;153:777-786.
CrossRef
Google scholar
|
[171] |
Zhu X, Jiang G, Wang G, et al. Cellulose-based functional gels and applications in flexible supercapacitors. Resour Chem Mater. 2023;2:177-188.
CrossRef
Google scholar
|
[172] |
Sheoran K, Devi N, Siwal SS. Incorporation of sulfur with graphitic carbon nitride into copper nanoparticles toward supercapacitor application. Nanofabrication. 2023;8.
CrossRef
Google scholar
|
[173] |
Sheoran K, Devi N, Alsanie WF, Siwal SS, Thakur VK. An aniline-complexed bismuth tungstate nanocomposite anchored on carbon black as an electrode material for supercapacitor applications. ChemistrySelect. 2023;8(42):e202301878.
CrossRef
Google scholar
|
[174] |
Pérez-Madrigal MM, Edo MG, Alemán C. Powering the future: application of cellulose-based materials for supercapacitors. Green Chem. 2016;18(22):5930-5956.
CrossRef
Google scholar
|
[175] |
Sheoran K, Kaur H, Siwal SS, Thakur VK. Dual role is always better than single: ionic liquid as a reaction media and electrolyte for carbon-based materials in supercapacitor applications. Adv Energy Sustain Res. 2023;4(9):2300021.
CrossRef
Google scholar
|
[176] |
Devi N, Siwal SS. MXene-based nanomaterials for supercapacitor applications: new pathways for the future. Nanofabrication. 2022;7.
CrossRef
Google scholar
|
[177] |
Li B, Lopez-Beltran H, Siu C, et al. Vaper phase polymerized PEDOT/cellulose paper composite for flexible solid-state supercapacitor. ACS Appl Energy Mater. 2020;3(2):1559-1568.
CrossRef
Google scholar
|
[178] |
Peng Z, Zou Y, Xu S, Zhong W, Yang W. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Appl Mater Interfaces. 2018;10(26):22190-22200.
CrossRef
Google scholar
|
[179] |
Ma L, Bi Z, Xue Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion. J Mater Chem A. 2020;8(12):5812-5842.
CrossRef
Google scholar
|
[180] |
Kim J-H, Lee D, Lee Y-H, Chen W, Lee S-Y. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater. 2019;31(20):1804826.
CrossRef
Google scholar
|
[181] |
Beniwal K, Kaur H, Saini AK, Siwal SS. Synthesis and applications of carbon porous nano-materials for environmental remediation. Nanofabrication. 2022;7:174.
CrossRef
Google scholar
|
[182] |
Vocht MP, Ota A, Frank E, Hermanutz F, Buchmeiser MR. Preparation of cellulose-derived carbon fibers using a new reduced-pressure stabilization method. Ind Eng Chem Res. 2022;61(15):5191-5201.
CrossRef
Google scholar
|
[183] |
Chen L-F, Huang Z-H, Liang H-W, Gao H-L, Yu S-H. Threedimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater. 2014;24(32):5104-5111.
CrossRef
Google scholar
|
[184] |
Long C, Qi D, Wei T, Yan J, Jiang L, Fan Z. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv Funct Mater. 2014;24(25):3953-3961.
CrossRef
Google scholar
|
[185] |
Chen C, Hu L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res. 2018;51(12):3154-3165.
CrossRef
Google scholar
|
[186] |
Wang Z, Tammela P, Strøme M, Nyholm L. Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater. 2017;7(18):1700130.
CrossRef
Google scholar
|
[187] |
Wang Z, Lee Y-H, Kim S-W, Seo J-Y, Lee S-Y, Nyholm L. Why cellulose-based electrochemical energy storage devices? Adv Mater. 2021;33(28):2000892.
CrossRef
Google scholar
|
[188] |
Cho S-J, Choi K-H, Yoo J-T, et al. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv Funct Mater. 2015;25(38):6029-6040.
CrossRef
Google scholar
|
[189] |
Xu T, Du H, Liu H, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater. 2021;33(48):2101368.
CrossRef
Google scholar
|
[190] |
Zhang X, Li J, Liu D, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ Sci. 2021;14(5):3120-3129.
CrossRef
Google scholar
|
[191] |
Ling S, Chen W, Fan Y, et al. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci. 2018;85:1-56.
CrossRef
Google scholar
|
[192] |
Huang J, Zhao M, Hao Y, Wei Q. Recent advances in functional bacterial cellulose for wearable physical sensing applications. Adv Mater Technol. 2022;7(1):2100617.
CrossRef
Google scholar
|
/
〈 | 〉 |