Electrocatalysis-driven sustainable plastic waste upcycling

Gaihong Wang , Zhijie Chen , Wei Wei , Bing-Jie Ni

Electron ›› 2024, Vol. 2 ›› Issue (2) : 34

PDF
Electron ›› 2024, Vol. 2 ›› Issue (2) :34 DOI: 10.1002/elt2.34
REVIEW ARTICLE

Electrocatalysis-driven sustainable plastic waste upcycling

Author information +
History +
PDF

Abstract

With large quantities and natural resistance to degradation, plastic waste raises growing environmental concerns in the world. To achieve the upcycling of plastic waste into value-added products, the electrocatalyticdriven process is emerging as an attractive option due to the mild operation conditions, high reaction selectivity, and low carbon emission. Herein, this review provides a comprehensive overview of the upgrading of plastic waste via electrocatalysis. Specifically, key electrooxidation processes including the target products, intermediates and reaction pathways in the plastic electro-reforming process are discussed. Subsequently, advanced electrochemical systems, including the integration of anodic plastic monomer oxidation and value-added cathodic reduction and photoinvolved electrolysis processes, are summarized. The design strategies of electrocatalysts with enhanced activity are highlighted and catalytic mechanisms in the electrocatalytic oxidation of plastic waste are elucidated. To promote the electrochemistry-driven sustainable upcycling of plastic waste, challenges and opportunities are further put forward.

Keywords

catalyst design / electrocatalytic reforming / electrochemical oxidation / hydrogen energy / plastic waste

Cite this article

Download citation ▾
Gaihong Wang, Zhijie Chen, Wei Wei, Bing-Jie Ni. Electrocatalysis-driven sustainable plastic waste upcycling. Electron, 2024, 2(2): 34 DOI:10.1002/elt2.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Zhang L, Wang L, Kuang M, Wang S, Yang J. Toward carbon neutrality: selective conversion of waste plastics into value-added chemicals. Matter. 2023;6:3322-3347.

[2]

Yu J, Sun L, Ma C, Qiao Y, Yao H. Thermal degradation of PVC: a review. Waste Manag. 2016;48:300-314.

[3]

Agrawala S, Lanzi E, Dellink R. Global Plastics Outlook: Policy Scenarios to 2060. OECD Publishing;2022.

[4]

Barnes DKA, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Phil Trans Roy Soc B. 2009;364(1526):1985-1998.

[5]

Law KL, Thompson RC. Microplastics in the seas. Science. 2014;345(6193):144-145.

[6]

Cornwall W. The plastic eaters. Science. 2021;373(6550):36-39.

[7]

MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373(6550):61-65.

[8]

Williams J. The new plastic economy. Ecogeneration. 2017:58.

[9]

Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. Occurrence of microplastics in raw and treated drinking water. Sci Total Environ. 2018;643:1644-1651.

[10]

Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56(7):1720-1739.

[11]

Chen Z, Liu X, Wei W, Chen H, Ni B-J. Removal of microplastics and nanoplastics from urban waters: separation and degradation. Water Res. 2022;221:118820.

[12]

Chen Z, Shi X, Zhang J, Wu L, Wei W, Ni B-J. Nanoplastics are significantly different from microplastics in urban waters. Water Res. 2023;19:100169.

[13]

Rahimi A, García JM. Chemical recycling of waste plastics for new materials production. Nat Rev Chem. 2017;1(6):0046.

[14]

Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Clean Prod. 2019;225:1052-1064.

[15]

Ren W, Zhou P, Nie G, et al. Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metalfree boron: kinetics and mechanisms. Water Res. 2020;186:116361.

[16]

Anjana K, Hinduja M, Sujitha K, Dharani G. Review on plastic wastes in marine environment –biodegradation and biotechnological solutions. Mar Pollut Bull. 2020;150:110733.

[17]

Chen Z, Wei W, Liu X, Ni B-J. Emerging electrochemical techniques for identifying and removing micro/nanoplastics in urban waters. Water Res. 2022;221:118846.

[18]

Zhuo M, Chen Z, Liu X, Wei W, Shen Y, Ni B-J. A broad horizon for sustainable catalytic oxidation of microplastics. Environ Pollut. 2024;340:122835.

[19]

Schyns ZOG, Shaver MP. Mechanical recycling of packaging plastics: a review. Macromol Rapid Commun. 2021;42(3):2000415.

[20]

Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24-58.

[21]

Sardon H, Dove AP. Plastics recycling with a difference. Science. 2018;360(6387):380-381.

[22]

Liu B, Lu X, Ju Z, et al. Ultrafast homogeneous glycolysis of waste polyethylene terephthalate via a dissolutiondegradation strategy. Ind Eng Chem Res. 2018;57(48):16239-16245.

[23]

Jing Y, Wang Y, Furukawa S, et al. Toward the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew Chem Int Ed. 2021;60(10):5527-5535.

[24]

Demarteau J, O’Harra KE, Bara JE, Sardon H. Valorization of plastic wastes for the synthesis of imidazolium-based self-supported elastomeric ionenes. ChemSusChem. 2020;13(12):3122-3126.

[25]

Quaranta E, Dibenedetto A, Nocito F, Fini P. Chemical recycling of poly-(bisphenol A carbonate) by diaminolysis: a new carbon-saving synthetic entry into non-isocyanate polyureas (NIPUreas). J Hazard Mater. 2021;403:123957.

[26]

Kumar A, von Wolff N, Rauch M, et al. Hydrogenative depolymerization of nylons. J Am Chem Soc. 2020;142(33):14267-14275.

[27]

Fuentes JA, Smith SM, Scharbert MT, et al. On the functional group tolerance of ester hydrogenation and polyester depolymerisation catalysed by Ruthenium complexes of tridentate aminophosphine ligands. Chem-Eur J. 2015;21(30):10851-10860.

[28]

Westhues S, Idel J, Klankermayer J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci Adv. 2018;4(8):eaat9669.

[29]

Chen G, Li X, Feng X. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew Chem Int Ed. 2022;61(42):e202209014.

[30]

Chen Z, Wei W, Song L, Ni B-J. Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production. Sustain Horiz. 2022;1:100002.

[31]

Zhou Y, Rodríguez-López J, Moore JS. Heterogenous electromediated depolymerization of highly crystalline polyoxymethylene. Nat Commun. 2023;14(1):4847.

[32]

Tee SY, Win KY, Teo WS, et al. Recent progress in energydriven water splitting. Adv Sci. 2017;4(5):1600337.

[33]

Wu D, Kusada K, Yoshioka S, et al. Efficient overall water splitting in acid with anisotropic metal nanosheets. Nat Commun. 2021;12(1):1145.

[34]

Zhuang Z, Wang Y, Xu C-Q, et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat Commun. 2019;10(1):4875.

[35]

Dotan H, Landman A, Sheehan SW, et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat Energy. 2019;4(9):786-795.

[36]

Wolff CM, Frischmann PD, Schulze M, et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat Energy. 2018;3(10):862-869.

[37]

Qian Q, He X, Li Z, et al. Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv Mater. 2023;35(25):2300935.

[38]

Chen Z, Liu Y, Wei W, Ni B-J. Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ Sci Nano. 2019;6(8):2332-2366.

[39]

Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009;323(5915):760-764.

[40]

Chen Z, Han N, Zheng R, Ren Z, Wei W, Ni B. Design of earth-abundant amorphous transition metal-based catalysts for electrooxidation of small molecules: advances and perspectives. SusMat. 2023;3:290-319.

[41]

Chen Z, Zheng R, Wei W, Wei W, Ni B-J, Chen H. Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. J Energy Chem. 2022;68:275-283.

[42]

Li R, Xiang K, Peng Z, Zou Y, Wang S. Recent advances on electrolysis for simultaneous generation of valuable chemicals at both anode and cathode. Adv Energy Mater. 2021;11(46):2102292.

[43]

Wang D, Wang P, Wang S, Chen Y-H, Zhang H, Lei A. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat Commun. 2019;10(1):2796.

[44]

Liang Z, Jiang D, Wang X, et al. Molecular engineering to tune the ligand environment of atomically dispersed nickel for efficient alcohol electrochemical oxidation. Adv Funct Mater. 2021;31(51):2106349.

[45]

Chen Z, Wei W, Ni B-J. Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Curr Opin Electrochem. 2022;31:100888.

[46]

Chen Z, Wei W, Shon HK, Ni B-J. Designing bifunctional catalysts for urea electrolysis: progress and perspectives. Green Chem. 2024;26:631-654.

[47]

Chen Z, Zheng R, Zou H, et al. Amorphous iron-doped nickel boride with facilitated structural reconstruction and dual active sites for efficient urea electrooxidation. Chem Eng J. 2023;465:142684.

[48]

Luo H, Barrio J, Sunny N, et al. Progress and perspectives in photo-and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv Energy Mater. 2021;11(43):2101180.

[49]

Lucas FWS, Grim RG, Tacey SA, et al. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett. 2021:1205-1270.

[50]

Liu W-J, Dang L, Xu Z, Yu H-Q, Jin S, Huber GW. Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 2018;8(6):5533-5541.

[51]

Zhang N, Zou Y, Tao L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew Chem Int Ed. 2019;131(44):16042-16050.

[52]

Chen Z, Zheng R, Bao T, et al. Dual-doped nickel sulfide for electro-upgrading polyethylene terephthalate into valuable chemicals and hydrogen fuel. Nano-Micro Lett. 2023;15(1):210.

[53]

Liu F, Gao X, Shi R, Guo Z, Tse ECM, Chen Y. Concerted and selective electrooxidation of polyethylene-terephthalatederived alcohol to glycolic acid at an industry-level current density over a Pd–Ni(OH)2 catalyst. Angew Chem Int Ed. 2023;62(11):e202300094.

[54]

Zhou H, Ren Y, Li Z, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat Commun. 2021;12(1):4679.

[55]

Wang J, Li X, Wang M, et al. Electrocatalytic valorization of poly(ethylene terephthalate) plastic andCO2 for simultaneous production of formic acid. ACS Catal. 2022;12(11):6722-6728.

[56]

Mishra S, Goje AS. Chemical recycling, kinetics, and thermodynamics of alkaline depolymerization of waste poly (ethylene terephthalate) (PET). Polym React Eng. 2003;11(4):963-987.

[57]

Barredo A, Asueta A, Amundarain I, et al. Chemical recycling of monolayer PET tray waste by alkaline hydrolysis. J Environ Chem Eng. 2023;11(3):109823.

[58]

Yue H, Zhao Y, Ma X, Gong J. Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev. 2012;41(11):4218-4244.

[59]

Zhang Z, Huber GW. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev. 2018;47(4):1351-1390.

[60]

Xin L, Zhang Z, Qi J, Chadderdon D, Li W. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: reaction pathway investigation in three-electrode cell and fuel cell reactors. Appl Catal B Environ. 2012;125:85-94.

[61]

Liu F, Gao X, Shi R, Tse ECM, Chen Y. A general electrochemical strategy for upcycling polyester plastics into addedvalue chemicals by a CuCO2O4 catalyst. Green Chem. 2022;24(17):6571-6577.

[62]

Zhang AY, Sun Z, Joe Leung CC, et al. Valorisation of bakery waste for succinic acid production. Green Chem. 2013;15(3):690-695.

[63]

Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43-51.

[64]

Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun. 2014;5(1):3242.

[65]

Li L, Wang P, Shao Q, Huang X. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv Mater. 2021;33(50):2004243.

[66]

Chen Z, Zheng R, Deng S, et al. Modular design of an efficient heterostructured FeS2/TiO2 oxygen evolution electrocatalyst via sulfidation of natural ilmenites. J Mater Chem A. 2021;9(44):25032-25041.

[67]

Chen Z, Wei W, Chen H, Ni B-J. Eco-designed electrocatalysts for water splitting: a path toward carbon neutrality. Int J Hydrogen Energy. 2023;48(16):6288-6307.

[68]

Yan Y, Zhou H, Xu S-M, et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J Am Chem Soc. 2023;145(11):6144-6155.

[69]

Ren T, Yu Z, Yu H, et al. Sustainable ammonia electrosynthesis from nitrate wastewater coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste. ACS Nano. 2023;17(13):12422-12432.

[70]

Miao Y, Zhao Y, Zhang S, Shi R, Zhang T. Strain engineering: a boosting strategy for photocatalysis. Adv Mater. 2022;34(2022):2200868.

[71]

Yan Y, Wang P, Lin J, Cao J, Qi J. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J Energy Chem. 2021;58:446-462.

[72]

Sun J, Zhou Y, Zhao Z, Meng X, Li Z. Modification strategies to improve electrocatalytic activity in seawater splitting: a review. J Mater Sci. 2022;57(41):19243-19259.

[73]

Cheng R, Min Y, Li H, Fu C. Electronic structure regulation in the design of low-cost efficient electrocatalysts: from theory to applications. Nano Energy. 2023;115:108718.

[74]

Cao X, Huo J, Li L, et al. Recent advances in engineered Rubased electrocatalysts for the hydrogen/oxygen conversion reactions. Adv Energy Mater. 2022;12(41):2202119.

[75]

Mancini SD, Zanin M. Optimization of neutral hydrolysis reaction of post-consumer PET for chemical recycling. Prog Rubber Plast Recycl Technol. 2004;20(2):117-132.

[76]

Kawai F, Kawabata T, Oda M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol. 2019;103(11):4253-4268.

[77]

Yoshioka T, Sato T, Okuwaki A. Hydrolysis of waste PET by sulfuric acid at 150°C for a chemical recycling. J Appl Polym Sci. 1994;52(9):1353-1355.

[78]

Karayannidis GP, Chatziavgoustis AP, Achilias DS. Poly (ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis. Adv Polym Technol. 2002;21(4):250-259.

[79]

Barnard E, Rubio Arias JJ, Thielemans W. Chemolytic depolymerisation of PET: a review. Green Chem. 2021;23(11):3765-3789.

[80]

Paliwal NR, Mungray AK. Ultrasound assisted alkaline hydrolysis of poly(ethylene terephthalate) in presence of phase transfer catalyst. Polym Degrad Stabil. 2013;98(10):2094-2101.

[81]

Yamashita M, Mukai H. Alkaline hydrolysis of polyethylene terephthalate at lower reaction temperature. Sci Eng Rev Doshisha Univ. 2011;52:51-56.

[82]

Ügdüler S, Van Geem KM, Denolf R, et al. Toward closedloop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green Chem. 2020;22(16):5376-5394.

[83]

Aguado A, Martínez L, Becerra L, et al. Chemical depolymerisation of PET complex waste: hydrolysis vs. glycolysis. J Mater Cycles Waste Manag. 2014;16(2):201-210.

[84]

Carta D, Cao G, D’Angeli C. Chemical recycling of poly (ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Control Ser. 2003;10(6):390-394.

[85]

Bulushev DA, Ross JRH. Towards sustainable production of formic acid. ChemSusChem. 2018;11(5):821-836.

[86]

Millet DB, Baasandorj M, Farmer DK, et al. A large and ubiquitous source of atmospheric formic acid. Atmos Chem Phys. 2015;15(11):6283-6304.

[87]

Chen X, Liu Y, Wu J. Sustainable production of formic acid from biomass and carbon dioxide. Mol Catal. 2020;483:110716.

[88]

Rumayor M, Dominguez-Ramos A, Irabien A. Formic acid manufacture: carbon dioxide utilization alternatives. Appl Sci. 2018;8(6):914.

[89]

Ramulifho T, Ozoemena KI, Modibedi RM, Jafta CJ, Mathe MK. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes. J Electroanal Chem. 2013;692:26-30.

[90]

Liu X, Fang Z, Xiong D, et al. Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res. 2023;16(4):4625-4633.

[91]

Wang J, Li X, Zhang T, Chen Y, Wang T, Zhao Y. Electroreforming polyethylene terephthalate plastic to co-produce valued chemicals and green hydrogen. J Phys Chem Lett. 2022;13(2):622-627.

[92]

Zhao X, Boruah B, Chin KF, Đokić M, Modak JM, Soo HS. Upcycling to sustainably reuse plastics. Adv Mater. 2022;34(25):2100843.

[93]

Du M, Zhang Y, Kang S, et al. Electrochemical production of glycolate fuelled by polyethylene terephthalate plastics with improved techno-economics. Small. 2023;19(39):2303693.

[94]

Eerhart AJJE, Faaij APC, Patel MK. Replacing fossil based PET with biobased PEF;process analysis, energy and GHG balance. Energy Environ Sci. 2012;5(4):6407-6422.

[95]

Hwang K-R, Jeon W, Lee SY, Kim M-S, Park Y-K. Sustainable bioplastics: recent progress in the production of bio-building blocks for the bio-based next-generation polymer PEF. Chem Eng J. 2020;390:124636.

[96]

Liu X, Wang J, Fang Z, et al. Ultrafast activation of Ni foam by electro-corrosion and its use for upcycling PBT plastic waste. Appl Catal B Environ. 2023;334:122870.

[97]

Xiao C, Leow WR, Chen L, Li Y, Li C. Electrocatalytic conversion of waste polyamide-66 hydrolysates into high-addedvalue adiponitrile and hydrogen fuel. Electron. 2023;1(2):e14.

[98]

Ren L, Yang S, Wang J, et al. Electrocatalytic valorization of waste polyethylene furanoate (PEF) bioplastics for the production of formic acid and hydrogen energy. React Chem Eng J. 2023;8:1937-1942.

[99]

de Jong E, Visser A, Dias AS, Harvey C, Gruter G-JM. The road to bring FDCA and PEF to the market. Polymers. 2022;14(5):943.

[100]

Pichler CM, Bhattacharjee S, Rahaman M, Uekert T, Reisner E. Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical–photo/electrocatalytic processes. ACS Catal. 2021;11(15):9159-9167.

[101]

Chen Z, Wei W, Shen Y, Ni B-J. Defective nickel sulfide hierarchical structures for efficient electrochemical conversion of plastic waste to value-added chemicals and hydrogen fuel. Green Chem. 2023;25(15):5979-5988.

[102]

Zhang H, Wang Y, Li X, et al. Electrocatalytic upcycling of polyethylene terephthalate plastic to formic acid coupled with energy-saving hydrogen production over hierarchical Pddoped NiTe nanoarrays. Appl Catal B Environ. 2024;340:123236.

[103]

Liu K, Wang Y, Liu F, Liu C, Shi R, Chen Y. Selective electrocatalytic reforming of PET-derived ethylene glycol to formate with a Faraday efficiency of 93.2%at industrial-level current densities. Chem Eng J. 2023;473:145292.

[104]

Ma F, Wang S, Gong X, et al. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl Catal B Environ. 2022;307:121198.

[105]

Wang N, Li X, Hu M-K, et al. Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl Catal B Environ. 2022;316:121667.

[106]

Wang X-H, Zhang Z-N, Wang Z, et al. Ultra-thin CoNi0.2P nanosheets for plastics and biomass participated hybrid water electrolysis. Chem Eng J. 2023;465:142938.

[107]

Wang H, Zhan W, Yu H, et al. Nitrogen-doped Ni3P–NiMoO4 heterostructure arrays for coupling hydrogen production with polyethylene terephthalate plastic electro-recycling. Mater Today Phys. 2023;37:101192.

[108]

Mao Y, Fan S, Li X, et al. Trash to treasure: electrocatalytic upcycling of polyethylene terephthalate (PET) microplastic to value-added products by MN0.1Ni0.9CO2O4-δRSFs spinel. J Hazard Mater. 2023;457:131743.

[109]

Shi R, Liu K-S, Liu F, Yang X, Hou C-C, Chen Y. Electrocatalytic reforming of waste plastics into high value-added chemicals and hydrogen fuel. Chem Commun. 2021;57(94):12595-12598.

[110]

Li Y, Lee LQ, Yu ZG, et al. Coupling of PET waste electroreforming with green hydrogen generation using bifunctional catalyst. Sustain Energy Fuels. 2022;6(21):4916-4924.

[111]

Yang G, Jiao Y, Yan H, et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater. 2020;32(17):2000455.

[112]

Li R-Q, Liu Q, Zhou Y, et al. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. J Mater Chem A. 2021;9(7):4159-4166.

[113]

Li Y, Zhao Y, Zhao H, Wang Z, Li H, Gao P. A bifunctional catalyst of ultrathin cobalt selenide nanosheets for plasticelectroreforming-assisted green hydrogen generation. J Mater Chem A. 2022;10(38):20446-20452.

[114]

Maksso I, Samanta RC, Zhan Y, Zhang K, Warratz S, Ackermann L. Polymer up-cycling by mangana-electrocatalytic C(sp3)–H azidation without directing groups. Chem Sci. 2023;14(30):8109-8118.

[115]

Grimaldos-Osorio N, Sordello F, Passananti M, Vernoux P, Caravaca A. From plastic-waste to H2: electrolysis of a poly (methyl methacrylate) model molecule on polymer electrolyte membrane reactors. J Power Sources. 2020;480:228800.

[116]

Grimaldos-Osorio N, Sordello F, Passananti M, et al. From plastic-waste to H2: a first approach to the electrochemical reforming of dissolved poly(methyl methacrylate) particles. Int J Hydrogen Energy. 2023;48(32):11899-11913.

[117]

He W, Zhang J, Dieckhöfer S, et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat Commun. 2022;13(1):1129.

[118]

Liu Y, Liu K, Wang P, Jin Z, Li P. Electrocatalytic upcycling of nitrogenous wastes into green ammonia: advances and perspectives on materials innovation. Carbon Neutrality. 2023;2(1):14.

[119]

Wang Z, Richards D, Singh N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal Sci Technol. 2021;11(3):705-725.

[120]

Theerthagiri J, Park J, Das HT, et al. Electrocatalytic conversion of nitrate waste into ammonia: a review. Environ Chem Lett. 2022;20(5):2929-2949.

[121]

Yao Y, Wang J, Shahid UB, et al. Electrochemical synthesis of ammonia from nitrogen under mild conditions: current status and challenges. Electrochem Energy Rev. 2020;3(2):239-270.

[122]

Ren T, Duan Z, Wang H, et al. Electrochemical co-production of ammonia and biodegradable polymer monomer glycolic acid via the co-electrolysis of nitrate wastewater and waste plastic. ACS Catal. 2023;13(15):10394-10404.

[123]

Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature. 2019;575(7781):87-97.

[124]

Li J, Chen G, Zhu Y, et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat Catal. 2018;1(8):592-600.

[125]

Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci. 2018;5(1):1700275.

[126]

Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature. 2016;537(7620):382-386.

[127]

Kilaparthi SK, Addad A, Barras A, Szunerits S, Boukherroub R. Simultaneous upcycling of PET plastic waste and CO2 reduction through co-electrolysis: a novel approach for integrating CO2 reduction and PET hydrolysate oxidation. J Mater Chem A. 2023;11(47):26075-26085.

[128]

Ochedi FO, Liu D, Yu J, Hussain A, Liu Y. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review. Environ Chem Lett. 2021;19(2):941-967.

[129]

Miao Y, Zhao Y, Waterhouse GIN, Shi R, Wu L-Z, Zhang T. Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions. Nat Commun. 2023;14(1):4242.

[130]

Kim J, Jang J, Hilberath T, Hollmann F, Park CB. Photoelectrocatalytic biosynthesis fuelled by microplastics. Nature Synthesis. 2022;1(10):776-786.

[131]

Bhattacharjee S, Rahaman M, Andrei V, et al. Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming. Nat Synth. 2023;2:182-192.

[132]

Li X, Wang J, Zhang T, Wang T, Zhao Y. Photoelectrochemical catalysis of waste polyethylene terephthalate plastic to coproduce formic acid and hydrogen. ACS Sust Chem Eng. 2022;10(29):9546-9552.

[133]

Zhang B, Zhang H, Pan Y, et al. Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production. Chem Eng J. 2023;462:142247.

[134]

Bhattacharjee S, Andrei V, Pornrungroj C, Rahaman M, Pichler CM, Reisner E. Reforming of soluble biomass and plastic derived waste using a bias-free Cu30Pd70|perovskite|Pt photoelectrochemical device. Adv Funct Mater. 2022;32(7):2109313.

[135]

Bellardita M, Loddo V, Parrino F, Palmisano L. (Photo)electrocatalytic versus heterogeneous photocatalytic carbon dioxide reduction. ChemPhotoChem. 2021;5(9):767-791.

[136]

Li X, Wang J, Sun M, Qian X, Zhao Y. Ti–Fe2O3/Ni(OH)x as an efficient and durable photoanode for the photoelectrochemical catalysis of PET plastic to formic acid. J Energy Chem. 2023;78:487-496.

[137]

Chen Z, Duan X, Wei W, Wang S, Ni B-J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J Mater Chem A. 2019;7(25):14971-15005.

[138]

Wang Y, Liu K, Liu F, Liu C, Shi R, Chen Y. Selective electroreforming of waste polyethylene terephthalate-derived ethylene glycol into C2 chemicals with long-term stability. Green Chem. 2023;25(15):5872-5877.

[139]

Chen Z, Zheng R, Graś M, et al. Tuning electronic property and surface reconstruction of amorphous iron borides via WP co-doping for highly efficient oxygen evolution. Appl Catal B Environ. 2021;288:120037.

[140]

Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science. 2014;343(6177):1339-1343.

[141]

Zhang L, Zhao Z, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed. 2017;56(38):11326-11353.

[142]

Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano. 2018;12(10):9635-9638.

[143]

Liu P, Chen B, Liang C, et al. Tip-enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions. Adv Mater. 2021;33(9):2007377.

[144]

Wu Y-L, Li X, Wei Y-S, et al. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv Mater. 2021;33(12):2006965.

[145]

Li W, Liu J, Guo P, et al. Co/CoP heterojunction on hierarchically ordered porous carbon as a highly efficient electrocatalyst for hydrogen and oxygen evolution. Adv Energy Mater. 2021;11(42):2102134.

[146]

Xiong P, Tan J, Lee H, et al. Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries. Nano Mater Sci.2022.

[147]

Chen M, Zhang S-C, Zou Z-G, et al. Review of vanadiumbased oxide cathodes as aqueous zinc-ion batteries. Rare Met. 2023;42(9):2868-2905.

[148]

Chen Z, Duan X, Wei W, Wang S, Ni B-J. Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy. 2020;78:105392.

[149]

Sun J-P, Zheng Y, Zhang Z-S, Meng X-C, Li Z-Z. Modulation of d-orbital to realize enriched electronic cobalt sites in cobalt sulfide for enhanced hydrogen evolution in electrocatalytic water/seawater splitting. Rare Met. 2024;43(2):511-521.

[150]

Yan N-F, Cui H-M, Shi J-S, You S-Y, Liu S. Recent progress of W18O49 nanowires for energy conversion and storage. Tungsten. 2023;5(4):371-390.

[151]

Masnica JP, Sibt-e-Hassan S, Potgieter-Vermaak S, Regmi YN, King LA, Tosheva L. ZIF-8-derived Fe-C catalysts: relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon. 2023;1(2):160-169.

[152]

Pham TA, Ping Y, Galli G. Modelling heterogeneous interfaces for solar water splitting. Nat Mater. 2017;16(4):401-408.

[153]

Xu Q, Zhang J, Zhang H, et al. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ Sci. 2021;14(10):5228-5259.

[154]

Li J, Pan W, Liu Q, et al. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J Am Chem Soc. 2021;143(17):6551-6559.

[155]

Liu J, Kargarian M, Kareev M, et al. Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat Commun. 2013;4(1):2714.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

368

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/