Atomic-scale strain analysis for advanced Si/SiGe heterostructure by using transmission electron microscopy

Lan Li , Ran Bi , Zuoyuan Dong , Changqing Ye , Jing Xie , Chaolun Wang , Xiaomei Li , Kin-Leong Pey , Ming Li , Xing Wu

Electron ›› 2024, Vol. 2 ›› Issue (2) : 32

PDF
Electron ›› 2024, Vol. 2 ›› Issue (2) : 32 DOI: 10.1002/elt2.32
REVIEW ARTICLE

Atomic-scale strain analysis for advanced Si/SiGe heterostructure by using transmission electron microscopy

Author information +
History +
PDF

Abstract

Three-dimensional stacked transistors based on Si/SiGe heterojunction are a potential candidate for future low-power and high-performance computing in integrated circuits. Observing and accurately measuring strain in Si/SiGe heterojunctions is critical to increasing carrier mobility and improving device performance. Transmission electron microscopy (TEM) with high spatial resolution and analytical capabilities provides technical support for atomic-scale strain measurement and promotes significant progress in strain mapping technology. This paper reviews atomic-scale strain analysis for advanced Si/SiGe heterostructure based on TEM techniques. Convergent-beam electron diffraction, nano-beam electron diffraction, dark-field electron holography, and high-resolution TEM with geometrical phase analysis, are comprehensively discussed in terms of spatial resolution, strain precision, field of view, reference position, and data processing. Also, the advantages and critical issues of these strain analysis methods based on the TEM technique are summarized, and the future direction of TEM techniques in the related areas is prospected.

Keywords

GPA / heterostructure / Si/SiGe / strain / transmission electron microscopy

Cite this article

Download citation ▾
Lan Li, Ran Bi, Zuoyuan Dong, Changqing Ye, Jing Xie, Chaolun Wang, Xiaomei Li, Kin-Leong Pey, Ming Li, Xing Wu. Atomic-scale strain analysis for advanced Si/SiGe heterostructure by using transmission electron microscopy. Electron, 2024, 2(2): 32 DOI:10.1002/elt2.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chakrabarti B, Lastras-Montañ MA, Adam G, et al. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit. Sci Rep. 2017;7(1):42429.

[2]

Dong Z, Guo J. A simple model of negative capacitance FET with electrostatic short channel effects. IEEE Trans Electron Dev. 2017;64(7):2927-2934.

[3]

Li W, Ning H, Yu Z, Shi Y, Wang X. Reducing the power consumption of two-dimensional logic transistors. J Semiconduct. 2019;40(9):091002.

[4]

Cao W, Bu H, Vinet M, et al. The future transistors. Nature. 2020;620(7974):501-515.

[5]

Fan C, Cheng X, Xu L, et al. Monolithic three-dimensional integration of aligned carbon nanotube transistors for highperformance integrated circuits. InfoMat. 2023;5(7):e12420.

[6]

Diaz C, Goto K, Huang H, et al. 32nm Gate-First High-K/metal-Gate Technology for High Performance Low Power Applications. IEEE International Electron Devices Meeting;2008:1-4.

[7]

Jan C.-H, Agostinelli M, Deshpande H, et al. RF CMOS Technology Scaling in High-K/metal Gate Era for RF SoC (System-on-chip) Applications. International Electron Devices Meeting;2010:27.2.1-27.2.4.

[8]

Chan V, Rim K, Ieong M, et al. Strain for CMOS performance improvement. In: Proceedings of the IEEE 2005 Custom Integrated Circuits Conference;2005:667-674.

[9]

Chidambaram P, Bowen C, Chakravarthi S, Machala C, Wise R. Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing. IEEE Trans Electron Dev. 2006;53(5):944-964.

[10]

Hsu L-H, Lai Y-Y, Tu P-T, et al. Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration. Micromachines. 2021;12(10):1159.

[11]

Wang H, Sun L, He Y, et al. Asymmetric topological valley edge states on silicon-on-insulator platform. Laser Photon Rev. 2022;16(6).

[12]

Anderson J, He Y, Bahr B, Weinstein D. Integrated acoustic resonators in commercial fin field-effect transistor technology. Nature Electron. 2022;5(9):611-619.

[13]

Yin X, Zhang Y, Zhu H, et al. Vertical sandwich gate-all-around field-effect transistors with self-aligned high-k metal gates and small effective-gate-length variation. IEEE Electron Device Lett. 2020;41(1):8-11. https://doi.org/10.1109/LED.2019.2954537

[14]

Bhol K, Jena B, Nanda U. Silicon nanowire GAA-MOSFET: a workhorse in nanotechnology for future semiconductor devices. Silicon. 2022;14(7):3163-3171.

[15]

Luo Y, Zhang Q, Cao L, et al. Investigation of novel hybrid channel complementary FET scaling beyond 3-nm node from device to circuit. IEEE Trans Electron Dev. 2022;69(7):3581-3588.

[16]

Ryckaert J, Schuddinck P, Weckx P, et al. The Complementary FET (CFET) for CMOS scaling beyond N3. In: 2018 IEEE Symposium on VLSI Technology. IEEE;2018:141-142. https://doi.org/10.1109/vlsit.2018.8510618

[17]

Zhang J, Gao F, Hu P. A vertical transistor with a sub-1-nm channel. Nature Electron. 2021;4(5):325-325.

[18]

Xiao Z, Liu L, Chen Y, et al. High-density vertical transistors with pitch size down to 20 nm. Adv Sci. 2023;10(29):2302760.

[19]

Mertens H, Ritzenthaler R, Pena V, et al. Vertically Stacked Gate-All-Around Si Nanowire Transistors: Key Process Optimizations and Ring Oscillator Demonstration. IEEE International Electron Devices Meeting;2017:37.4.1-37.4.4.

[20]

Parikh P, Jaware D, Zhu J. 3D nanoscale imaging of semiconductor films for GAA (gate all around) device development. Microsc Microanal. 2022;28(S1):318-319.

[21]

Kim Y, Noh H, Paulsen BD, et al. Strain-engineering induced anisotropic crystallite orientation and maximized carrier mobility for high-performance microfiber-based organic bioelectronic devices. Adv Mater. 2021;33(10):2007550.

[22]

Yang L, Watling JR, Wilkins RC, et al. Si/SiGe heterostructure parameters for device simulations. Semicond Sci Technol. 2004;19(10):1174-1182.

[23]

Lee ML, Fitzgerald EA, Bulsara MT, Currie MT, Lochtefeld A. Strained Si, SiGe, and Ge channels for high-mobility metaloxide-semiconductor field-effect transistors. J Appl Phys. 2005;97(1).

[24]

Weiss NO, Zhou H, Liao L, et al. Graphene: an emerging electronic material. Adv Mater. 2012;24(43):5782-5825.

[25]

Radamson HH, Zhu H, Wu Z, et al. State of the art and future perspectives in advanced CMOS technology. Nanomaterials. 2020;10(8):1555.

[26]

Masadeh A, Božin E, Farrow C, et al. Quantitative sizedependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys Rev B. 2007;76(11):115413.

[27]

Robinson I, Harder R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater. 2009;8(4):291-298.

[28]

Hung PY, Kasper N, Nadeau J, Ok I, Hobbs C, Vigliante A. Application of inline high resolution X-ray diffraction in monitoring Si/SiGe and conventional Si in SOI fin-shaped field effect transistor processes. J Vac Sci Technol B. 2012;30(4):041211.

[29]

Schulze A, Loo R, Witters L, et al. Strain and compositional analysis of (Si) Ge fin structures using high resolution X-Ray diffraction. Phys Status Solidi C. 2017;14(12):1700156.

[30]

Perova T, Wasyluk J, Lyutovich K, et al. Composition and strain in thin Si1-xGex virtual substrates measured by micro-Raman spectroscopy and X-ray diffraction. J Appl Phys. 2011;109(3).

[31]

Qiu W, Li Q, Lei Z-K, Qin QH, Deng WL, Kang YL. The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon. 2013;53:161-168.

[32]

Ma L, Qiu W, Fan X. Stress/strain characterization in electronic packaging by micro-Raman spectroscopy: a review. Microelectron Reliab. 2021;118:114045.

[33]

Pelz PM, Griffin SM, Stonemeyer S, et al. Solving complex nanostructures with ptychographic atomic electron tomography. Nat Commun. 2023;14(1):7906. https://doi.org/10.1038/s41467-023-43634-z

[34]

Anderson N, Anger P, Hartschuh A, Novotny L. Subsurface Raman imaging with nanoscale resolution. Nano Lett. 2006;6(4):744-749.

[35]

Miao J, Ercius P, Billinge SJ. Atomic electron tomography:3D structures without crystals. Science. 2016;353(6306):aaF2157.

[36]

Luo C, Wang C, Wu X, Zhang J, Chu J. In Situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small. 2017;13(35):1604259.

[37]

Hoang VV, Cho YJ, Yoo JH, et al. 2D strain measurement in sub-10 nm SiGe layer with dark-field electron holography. Curr Appl Phys. 2015;15(11):1529-1533.

[38]

Boureau V, Durand A, Gergaud P, et al. Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs. J Appl Crystallogr. 2020;53(4):885-895.

[39]

Li J, Domenicucci A, Chidambarrao D, et al. Stress and strain measurements in semiconductor device channel areas by convergent beam electron diffraction. MRS Proc. 2006;913(1):503.

[40]

Mogili NVV, Tanner DA, Nakahara S. An analysis of germanium-silicon/silicon strained superlattice structure using convergent beam electron diffraction. Strain. 2016;52(2):162-171.

[41]

Choi YS, Lian G, Vartuli C, et al. Layout variatione effects in advanced MOSFETs: STI-induced embedded SiGe strain relaxation and dual-stress-liner boundary proximity effect. IEEE Trans Electron Dev. 2010;57(11):2886-2891.

[42]

Favia P, Richard O, Eneman G, et al. TEM investigations of gate-all-around nanowire devices. Semicond Sci Technol. 2019;34(12):124003.

[43]

Reboh S, Coquand R, Loubet N, et al. Imaging, Modeling and Engineering of Strain in Gate-All-Around Nanosheet Transitors. IEEE International Electron Devices Meeting;2019:11.5.1-11.5.4.

[44]

Li J, Mochizuki S, Stuckert E, et al. Precession electron diffraction (PED) strain characterization in stacked nanosheet FET structure. In: Proceedings of the ISTFA 2022 ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis. ASM;2022:74-77.

[45]

Huee F, Hytch M, Bender H, Houdellier F, Claverie A. Direct mapping of strain in a strained silicon transistor by highresolution electron microscopy. Phys Rev Lett. 2008;100(15):156602.

[46]

Glicksman M. Magnetoresistance of germanium-silicon alloys. Phys Rev. 1955;100(4):1146-1147.

[47]

Paul DJ. Si/SiGe heterostructures: from material and physics to devices and circuits. Semicond Sci Technol. 2004;19(10): r75-r108.

[48]

De Boer W, Meyer D. Low-temperature chemical vapor deposition of epitaxial Si and SiGe layers at atmospheric pressure. Appl Phys Lett. 1991;58(12):1286-1288.

[49]

Larsen AN. Epitaxial growth of Ge and SiGe on Si substrates. Mat Sci Semicond Process. 2006;9(4-5):454-459.

[50]

Shah V, Dobbie A, Myronov M, Fulgoni DJF, Nash LJ, Leadley DR. Reverse graded relaxed buffers for high Ge content SiGe virtual substrates. Appl Phys Lett. 2008;93(19).

[51]

Myronov M, Liu X-C, Dobbie A, Leadley D. Control of epilayer thickness during epitaxial growth of high Ge content strained Ge/SiGe multilayers by RP-CVD. J Cryst Growth. 2011;318(1):337-340.

[52]

Kasper E, Herzog H, Kibbel H. A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl Phys. 1975;8(3):199-205.

[53]

Ribot P, Monfray S, Skotnicki T, Dutartre D. Selective SiGe epitaxy by rtcvd for new device architectures. Mat Sci Eng, B. 2002;89(1-3):125-128.

[54]

Adam TN, Bedell S, Reznicek A, et al. Low-temperature epitaxial Si, SiGe, and SiC in a 300mm UHV/CVD reactor. ECS Trans. 2010;33(6):149-154.

[55]

Babcock JA, Cressler JD, Vempati LS, Clark S, Jaeger R, Harame D. Ionizing radiation tolerance of high-performance SiGe HBT’s grown by UHV/CVD. IEEE Trans Nucl Sci. 1995;42(6):1558-1566.

[56]

Byeon D.-S, Cho C, Yoon D, et al. Epitaxial growth of Si and SiGe using high-order silanes without a carrier gas at low temperatures via UHVCVD and LPCVD. Coatings. 2021;11(5):568.

[57]

Schwinge C, Kühnel K, Emara J, et al. Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applications. Appl Phys Lett. 2022;120(3).

[58]

Li Y, Zhao F, Cheng X, et al. Four-period vertically stacked SiGe/Si channel FinFET fabrication and its electrical characteristics. Nanomaterials. 2021;11(7):1689.

[59]

Hao A, Zhang L, Gao Z, Zhu Y, Riping L. First-principles study of structural stability and elastic properties of the ordered Si0.5Ge0.5 alloy under high pressure. Phys Status Solidi B. 2011;248(5):1135-1138.

[60]

Kasper E, Herzog H.-J. Silicon-Germanium (SiGe) Nanostructures. Elsevier;2011.

[61]

Geisler H, Weisheit M, Hofmann P, Engelmann H. The challenge of measuring strain in FDSOI device structures-HRXRD as a potential method of resolution. Adv Eng Mater. 2017;19(8).

[62]

Ye H, Yu J. Germanium epitaxy on silicon. Sci Technol Adv Mater. 2014;15(2):024601.

[63]

Dunstan DJ, Young S, Dixon RH. Geometrical theory of critical thickness and relaxation in strained-layer growth. J Appl Phys. 1991;70(6):3038-3045.

[64]

Persson S, Fjer M, Escobedo-Cousin E, et al. Strained-silicon heterojunction bipolar transistor. IEEE Trans Electron Dev. 2010;57(6):1243-1252.

[65]

Fischer G, Sasso G. Ageing and thermal recovery of advanced SiGe heterojunction bipolar transistors under long-term mixed-mode and reverse stress conditions. Microelectron Reliab. 2015;55(3-4):498-507.

[66]

Asthana PK, Goswami Y, Basak S, Rahi SB, Ghosh B. Improved performance of a junctionless tunnel field effect transistor with a Si and SiGe heterostructure for ultra low power applications. RSC Adv. 2015;5(60):48779-48785.

[67]

Kanungo S, Chattopadhyay S, Gupta PS, Sinha K, Rahaman H. Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans Electron Dev. 2016;63(6):2589-2596.

[68]

Durmaz H, Sookchoo P, Cui X, et al. SiGe nanomembrane quantum-well infrared photodetectors. ACS Photonics. 2016;3(10):1978-1985.

[69]

Zhang S, Zhang T, Liu Z, et al. Flexible and robust 3D a-SiGe radial junction near-infrared photodetectors for rapid sphygmic signal monitoring. Adv Funct Mater. 2022;32(2):2107040.

[70]

Liao MH. High-efficient Si nanotextured light-emitting diodes and solar cells with obvious photonic crystal effect. IEEE Trans Nanotechnol. 2010;10(4):774-777.

[71]

Lockwood DJ, Wu X, Baribeau J.-M, Mala SA, Wang X, Tsybeskov L. Si/SiGe heterointerfaces in one-two-and threedimensional nanostructures: their impact on SiGe light emission. ECS Trans. 2016;75(1):77-96.

[72]

Ramesh A, Berger PR, Loo R. High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition. Appl Phys Lett. 2012;100(9).

[73]

Ternent G, Paul DJ. SPICE modeling of the scaling of resonant tunneling diodes and the effects of sidewall leakage. IEEE Trans Electron Dev. 2012;59(12):3555-3560.

[74]

Yang N, Deng Y, Zhao S, Song Y, Huang J, Wu N. Mechanical metamaterials with discontinuous and tension/compressiondependent positive/negative Poisson’s ratio. Adv Eng Mater. 2022;24(3):2100787.

[75]

Katashima T, Urayama K, Chung U-i, Sakai T. Strain energy density function of a near-ideal polymer network estimated by biaxial deformation of Tetra-PEG gel. Soft Matter. 2012;8(31):8217-8222.

[76]

Hÿtch MJ, Minor AM. Observing and measuring strain in nanostructures and devices with transmission electron microscopy. MRS Bull. 2014;39(2):138-146.

[77]

Mohapatra NR, Desai MP, Narendra SG, Rao V. The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance. IEEE Trans Electron Dev. 2002;49(5):826-831.

[78]

Shauly EN, Rosenthal S. Coverage layout design rules and insertion utilities for CMP-related processes. J Low Power Electron Appl. 2020;11(1):2.

[79]

Cherns D, Touaitia R, Preston AR, Rossouw CJ, Houghton DC. Convergent beam electron diffraction studies of strain in Si/SiGe superlattices. Philos Mag A. 1991;64(3):597-612.

[80]

Eggeler Y, Müller J, Titus M, et al. Planar defect formation in the γ’ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 2016;113:335-349.

[81]

Béché A, Rouvière J, Barnes J, et al. Strain measurement at the nanoscale: comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy. 2013;131:10-23.

[82]

Kräer S, Mayer J, Witt C, et al. Analysis of local strain in aluminium interconnects by energy filtered CBED. Ultramicroscopy. 2000;81(3-4):245-262.

[83]

Toda A, Ikarashi N, Ono H. Local lattice strain measurements in semiconductor devices by using convergent-beam electron diffraction. J Cryst Growth. 2000;210(1-3):341-345.

[84]

Tanaka M, Terauchi M, Hiraga K, et al. Convergent-beam and small-area-parallel-beam electron diffraction of icosahedral quasicrystals of a melt-quenched Al-Mn alloy. Ultramicroscopy. 1985;17(4):279-285.

[85]

Latychevskaia T, Woods CR, Wang YB, et al. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals. Front Physiol. 2019;14:1-15.

[86]

Jones P, Rackham G, Steeds JW. Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proc R Soc London, A. 1977;354(1677):197-222.

[87]

Kelly P, Jostsons A, Blake R, et al. The determination of foil thickness by scanning transmission electron microscopy. Phys Status Solidi. 1975;31(2):771-780.

[88]

Clément L, Pantel R, Kwakman L, et al. Strain measurements by convergent-beam electron diffraction: the importance of stress relaxation in lamella preparations. Appl Phys Lett. 2004;85(4):651-653.

[89]

Carpenter R, Spence J. Three-dimensional strain-field information in convergent-beam electron diffraction patterns. Acta Crystallogr. 1982;38(1):55-61.

[90]

Houdellier F, Roucau C, Clément L, et al. Quantitative analysis of HOLZ line splitting in CBED patterns of epitaxially strained layers. Ultramicroscopy. 2006;106(10):951-959.

[91]

Zhang P, Istratov AA, Weber ER, et al. Direct strain measurement in a 65nm node strained silicon transistor by convergent-beam electron diffraction. Appl Phys Lett. 2006;89(16):161907.

[92]

Tanaka M, Saito R, Ueno K, et al. Large-angle convergentbeam electron diffraction. J Electron Microsc Tech. 1980;29(4):408-412. https://doi.org/10.1093/oxfordjournals.jmicro.a050262

[93]

Toh SL, Li K, Ang CH, et al. Evaluation of the Strain State in SiGe/Si Heterostructures by High Resolution X-Ray Diffraction and Convergent Beam Electron Diffraction. International Symposium on Physical & Failure Analysis of Integrated Circuits; 2005

[94]

Zhao W, Duscher G, Rozgonyi G. Local strain measurement on strained Si/SiGe heterostructures using convergent beam electron diffraction analysis. ECS Trans. 2006;2(2):549-558.

[95]

Uesugi F, Hokazono A, Takeno S. Evaluation of twodimensional strain distribution by STEM/NBD. Ultramicroscopy. 2011;111(8):995-998.

[96]

Karner S, Blank O, Röch M, Zalesak J, Keckes J, Gammer C. Nanobeam electron diffraction strain mapping in monocrystalline silicon of modern trench power MOSFETs. Microelectron Eng. 2022;264:111870.

[97]

Cooper D, Béché A, Hartmann J, et al. Strain Measurement for the Semiconductor Industry with Nm-Scale Resolution by Dark Field Electron Holography and Nanobeam Electron Diffraction. IEEE International Interconnect Technology Conference;2011:1-3.

[98]

Vincent R, Midgley PA. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy. 1994;53(3):271-282.

[99]

Rouviere J-L, Béché A, Martin Y, Denneulin T, Cooper D. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl Phys Lett. 2013;103(24):241913.

[100]

Rouviere JL, Martin Y, Bernier N, Vigouroux M, Cooper D, Zuo J. Using electron diffraction techniques, CBED and NPED to measure strain with high precision and high spatial resolution. Microsc Microanal. 2015;21(S3):2209-2210.

[101]

Béché A, Rouvière JL, Clément L, Hartmann JM. Improved precision in strain measurement using nanobeam electron diffraction. Appl Phys Lett. 2009;95(12):123114.

[102]

Müller K, Rosenauer A, Schowalter M, Zweck J, Fritz R, Volz K. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy. Microsc Microanal. 2012;18(5):995-1009.

[103]

Barraud S, Lapras V, Samson MP, et al. Vertically stackednanowires MOSFETs in a replacement metal gate process with inner spacer and SiGe source/drain. In: IEEE International Electron Devices Meeting;2016:17.6.1-17.6.4. https://doi.org/10.1109/IEDM.2016.7838441

[104]

Portillo J, Rauch EF, Nicolopoulos S, Gemmi M, Bultreys D. Precession electron diffraction assisted orientation mapping in the transmission electron microscope. Mat Sci Forum. 2010;644:1-7.

[105]

Viladot D, Véron M, Gemmi M, et al. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-theart results. J Microsc. 2013;252(1):23-34.

[106]

Ghamarian I, Liu Y, Samimi P, Collins PC. Development and application of a novel precession electron diffraction technique to quantify and map deformation structures in highly deformed materials—as applied to ultrafine-grained titanium. Acta Mater. 2014;79:203-215.

[107]

Cooper D, Bernier N, Rouviere J-L, et al. High-precision deformation mapping in finFET transistors with two nanometre spatial resolution by precession electron diffraction. Appl Phys Lett. 2017;110(22).

[108]

Cooper D, Denneulin T, Bernier N, Béché A, Rouvière JL. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron. 2016;80:145-165.

[109]

Li J, Mochizuki S, Zhang J, Loubet N, Gaudiello J, Haran B. Precession electron diffraction (PED) strain measurements in stacked nanosheet structures. Microsc Microanal. 2019;25(S2):2018-2019.

[110]

Reboh S, Coquand R, Barraud S, et al. Strain, stress, and mechanical relaxation in fin-patterned Si/SiGe multilayers for sub-7 nm nanosheet gate-all-around device technology. Appl Phys Lett. 2018;112(5).

[111]

Mahr C, Müller-Caspary K, Grieb T, et al. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction. Ultramicroscopy. 2015;158:38-48.

[112]

Cooper D, Barnes J-P, Hartmann J-M, Béché A, Rouviere JL. Dark field electron holography for quantitative strain measurements with nanometer-scale spatial resolution. Appl Phys Lett. 2009;95(5):053501.

[113]

Hÿtch M, Houdellier F, Hüe F, Snoeck E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature. 2008;453(7198):1086-1089.

[114]

Cooper D, Denneulin T, Barnes J-P, et al. Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy. J Appl Phys. 2012;112(12):124505.

[115]

McCartney MR, Agarwal N, Chung S, et al. Quantitative phase imaging of nanoscale electrostatic and magnetic fields using off-axis electron holography. Ultramicroscopy. 2010;110(5):375-382.

[116]

Soussou A, Cassé M, Reimbold G, et al. In depth study of Ge impact on advanced SiGe PMOS transistors. Electrochem Soc Trans. 2014;64(8):61-68.

[117]

Hytch M, Cherkashin N, Reboh S, Houdellier F, Claverie A. Strain mapping in layers and devices by electron holography. Phys Status Solidi. 2011;208(3):580-583.

[118]

Cooper D, Rouviere JL. Strain measurement with nanometre resolution by transmission electron microscopy. Adv Mater Res. 2014;996:3-7.

[119]

Hüe F, Hÿtch M, Houdellier F, Bender H, Claverie A. Strain mapping of tensiley strained silicon transistors with embedded Si1-yCy source and drain by dark-field holography. Appl Phys Lett. 2009;95(7):073103.

[120]

Conzatti F, Serra N, Esseni D, et al. Investigation of strain engineering in FinFETs comprising experimental analysis and numerical simulations. IEEE Trans Electron Dev. 2011;58(6):1583-1593.

[121]

Coquand R, Cassé M, Barraud S, et al. Strain-induced performance enhancement of trigate and omega-gate nanowire FETs scaled down to 10-nm width. IEEE Trans Electron Dev. 2013;60(2):727-732.

[122]

Hÿtch MJ, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy. 1998;74(3):131-146.

[123]

Li J, Reboh S, Chao R, et al. Nanobeam diffraction and geometric phase analysis for strain measurements in Si/SiGe nanosheet structures. Microsc Microanal. 2016;22(S3):1528-1529.

[124]

Glowacki F, Royer CL, Morand Y, et al. Ultrathin (5 nm) SiGe-On-Insulator with high compressive strain (−2 GPa): from fabrication (Ge enrichment process) to in-depth characterizations. Solid State Electron. 2014;97:82-87.

[125]

Hÿtch MJ, Putaux J-L, Pénisson J-M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature. 2003;423(6937):270-273.

[126]

Urban KW. Studying atomic structures by aberrationcorrected transmission electron microscopy. Science. 2008;321(5888):506-510.

[127]

Taraci JL, Hÿtch MJ, Clement T, et al. Strain mapping in nanowires. Nanotechnology. 2005;16(10):2365-2371.

[128]

ÿtch MJ, Putaux J-L, Pénisson J-M. Nanoscale measurement of stress and strain by quantitative high-resolution electron microscopy. Mat. Sci. Forum. 2005;482:39-44.

[129]

Hüe F, Hÿtch M, Bender H, Hartmann JM, Claverie A. Strain measurements in s-Si/SiGe nanostructures by quantitative high-resolution electron microscopy. MRS Proc. 2007;1026(1):1026-C20-04. https://doi.org/10.1557/proc-1026-c20-04

[130]

Chung J, Rabenberg L. Effects of strain gradients on strain measurements using geometrical phase analysis in the transmission electron microscope. Ultramicroscopy. 2008;108(12):1595-1602.

[131]

Reboh S, Coquand R, Loubet N, et al. Stress and strain evolution in stacked gate-all-around transistors for sub-7nm node studied by advanced transmission electron microscopy techniques and finite element method modelling. Electrochemical Society Meeting Abstracts 233. Vol 22. The Electrochemical Society, Inc;2018:1370-1370.

[132]

Hoang VV, Trinh VT. 2D strain mapping in sub-10nm SiGe layer with high-resolution transmission electron microscopy and geometric phase analysis. Nano Hybrids Compos. 2022;37:41-47.

[133]

Mochizuki S, Li J, Stuckert E, et al. Compressive strained Si1-xGex channel for high performance gate-all-around nanosheet transistors. Electrochemical Society Meeting Abstracts 242 2022:Vol 32;1192-1192.The Electrochemical Society, Inc.

[134]

Cooper D, Bernier N, Rouviere JL. Deformation Mapping in a TEM: Dark Field Electron Holography, Nanobeam Electron Diffraction, Precession Electron Diffraction and GPA Compared. European Microscopy Congress;2016:627-628.

[135]

Li J, Zhao C, Xing Y, et al. Full-field strain mapping at a Ge/Si heterostructure interface. Materials. 2013;6(6):2130-2142.

[136]

Dash TP, Dey S, Das S, et al. Performance comparison of strained-SiGe and bulk-Si channel FinFETs at 7 nm technology node. J Micromech Microeng. 2019;29(10):104001.

[137]

Gómez-de-Mariscal E, Maška M, Kotrbová A, et al. Deeplearning-based segmentation of small extracellular vesicles in transmission electron microscopy images. Sci Rep. 2019;9(1):13211.

[138]

Lee S, Im J, Yoo Y, et al. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat Commun. 2014;5(1):3033.

[139]

Taheri ML, Stach EA, Arslan I, et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy. 2016;170:86-95.

[140]

Li X, Sun M, Shan C, et al. Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv Mater Interfac. 2018;5(5).

[141]

Goris B, Beenhouwer JD, Backer AD, et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 2015;15(10):6996-7001.

[142]

Wen H, Zhang H, Peng R, et al. 3D strain measurement of heterostructures using the scanning transmission electron microscopy moiré depth sectioning method. Small Methods. 2023;7(9):e2300107.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

489

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/