Colloidal quantum dots and two-dimensional material heterostructures for photodetector applications
Jingying Luo, Gurpreet Singh Selopal, Xin Tong, Zhiming Wang
Colloidal quantum dots and two-dimensional material heterostructures for photodetector applications
Photodetectors (PDs) are optoelectronic devices that convert optical signals into electrical responses. Recently, there has been a tremendous increase in research interest in PDs based on colloidal quantum dots (QDs) and two-dimensional (2D) material heterostructures owing to the strong light-absorption capacity and the well-adjustable band gap of QDs and the superior charge carriers transfer ability of 2D materials. In particular, the heterojunction formed between QDs and 2D materials can effectively enhance the separation and transport of photogenerated charge carriers, which is expected to establish PDs with ultrahigh photoconductive gain, high responsivity, and detectivity. This review aimed to summarize the state-of-the-art advances in the research of QDs/2D material nanohybrid PDs, including the device parameters, architectures, working mechanisms, and fabrication technologies. The progress of hybrid PDs based on the heterojunction of QDs with different 2D materials, along with their innovative applications, are comprehensively described. In the end, the challenges and feasible strategies in future research and development are briefly proposed.
heterostructures / photodetectors / quantum dots / two-dimensional materials
[1] |
Yang B, Guo P, Hao D, et al. Self-powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Sci China Mater. 2023;66(2):716-723.
CrossRef
Google scholar
|
[2] |
Xie Y, Liang F, Chi S, et al. Defect engineering of MoS2 for room-temperature terahertz photodetection. ACS Appl Mater Interfaces. 2020;12(6):7351-7357.
CrossRef
Google scholar
|
[3] |
Zhou X, Hu X, Zhou S, et al. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv Mater. 2018;30(7):1703286.
CrossRef
Google scholar
|
[4] |
Yang S, Luo P, Wang F, et al. Van der Waals epitaxy of Bi2Te2Se/Bi2O2Se vertical heterojunction for high performance photodetector. Small. 2022;18(6):2105211.
CrossRef
Google scholar
|
[5] |
Lin YH, Huang W, Pattanasattayavong P, et al. Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nat Commun. 2019;10(1):4475.
CrossRef
Google scholar
|
[6] |
Ercan E, Lin YC, Yang WC, Chen WC. Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv Funct Mater. 2022;32(6):2107925.
CrossRef
Google scholar
|
[7] |
Wei Y, Chen H, Liu T, et al. Self-powered organic photodetectors with high detectivity for near infrared light detection enabled by dark current reduction. Adv Funct Mater. 2021;31(52):2106326.
CrossRef
Google scholar
|
[8] |
Shao B, Wan T, Liao F, et al. Highly trustworthy in-sensor cryptography for image encryption and authentication. ACS Nano. 2023;17(11):10291-10299.
CrossRef
Google scholar
|
[9] |
Michel J, Liu J, Kimerling LC. High-performance Ge-on-Si photodetectors. Nat Photonics. 2010;4(8):527-534.
CrossRef
Google scholar
|
[10] |
Zhang H, Zhang X, Liu C, Lee ST, Jie J. High-responsivity, highdetectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano. 2016;10(5):5113-5122.
CrossRef
Google scholar
|
[11] |
Zhuo R, Wang Y, Wu D, et al. High-performance selfpowered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. J Mater Chem C. 2018;6(2):299-303.
CrossRef
Google scholar
|
[12] |
Fang Y, Huang J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv Mater. 2015;27(17):2804-2810.
CrossRef
Google scholar
|
[13] |
Bai F, Qi J, Li F, et al. A high-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures. Adv Mater Interfaces. 2018;5(6):1701275.
CrossRef
Google scholar
|
[14] |
Guo R, Zhang M, Ding J, Liu A, Huang F, Sheng M. Advances in colloidal quantum dot-based photodetectors. J Mater Chem C. 2022;10(19):7404-7422.
CrossRef
Google scholar
|
[15] |
Dong T, Simõs J, Yang Z. Flexible photodetector based on 2D materials: processing, architectures, and applications. Adv Mater Interfaces. 2020;7(4):1901657.
CrossRef
Google scholar
|
[16] |
Shen T, Yuan J, Zhong X, Tian J. Dip-coated colloidal quantum-dot films for high-performance broadband photodetectors. J Mater Chem C. 2019;7(21):6266-6272.
CrossRef
Google scholar
|
[17] |
Arquer FP, Talapin DV, Klimov VI, Arakawa Y, Bayer M, Sargent EH. Semiconductor quantum dots: technological progress and future challenges. Science. 2021;373(6555):eaaz8541.
CrossRef
Google scholar
|
[18] |
Khan K, Tareen AK, Aslam M, et al. Recent developments in emerging two-dimensional materials and their applications. J Mater Chem C. 2020;8(2):387-440.
CrossRef
Google scholar
|
[19] |
Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small. 2017;13:1700894.
CrossRef
Google scholar
|
[20] |
Zhang C, Yin X, Chen G, et al. High-performance photodetector with a-IGZO/PbS quantum dots heterojunction. ACS Photonics. 2023;10(3):790-800.
CrossRef
Google scholar
|
[21] |
Liu Y, Zhao C, Li J, et al. Highly sensitive CuInS2/ZnS core-shell quantum dot photodetectors. ACS Appl Electron Mater. 2021;3(3):1236-1243.
CrossRef
Google scholar
|
[22] |
Chen B, Li D, Wang F. InP quantum dots: synthesis and lighting applications. Small. 2020;16(32):2002454.
CrossRef
Google scholar
|
[23] |
Sun YL, Xie D, Sun MX, et al. Hybrid graphene/cadmiumfree ZnSe/ZnS quantum dots phototransistors for UV detection. Sci Rep. 2018;8(1):5107.
CrossRef
Google scholar
|
[24] |
Kwak DH, Ramasamy P, Lee YS, Jeong MH, Lee JS. Highperformance hybrid InP QDs/black phosphorus photodetector. ACS Appl Mater Interfaces. 2019;11(32):29041-29046.
CrossRef
Google scholar
|
[25] |
Li X, Tong X, Yue S, et al. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy. 2021;89:106392.
CrossRef
Google scholar
|
[26] |
Pan R, Li H, Wang J, et al. High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid. Part Part Syst Char. 2018;35(4):1700304.
CrossRef
Google scholar
|
[27] |
Sahatiya P, Jones SS, Badhulika S. 2D MoS2-carbon quantum dot hybrid based large area, flexible UV-vis-NIR photodetector on paper substrate. Appl Mater Today. 2018;10:106-114.
CrossRef
Google scholar
|
[28] |
Kim CO, Hwang SW, Kim S, et al. High-performance graphenequantum-dot photodetectors. Sci Rep. 2014;4(1):5603.
CrossRef
Google scholar
|
[29] |
Vu QA, Lee JH, Nguyen VL, et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity. Nano Lett. 2017;17(1):453-459.
CrossRef
Google scholar
|
[30] |
Robin A, Lhuillier E, Xu XZ, et al. Engineering the charge transfer in all 2D graphene-nanoplatelets heterostructure photodetectors. Sci Rep. 2016;6(1):24909.
CrossRef
Google scholar
|
[31] |
Gao S, Wang Z, Wang H, et al. Graphene/MoS2/graphene vertical heterostructure-based broadband photodetector with high performance. Adv Mater Interfaces. 2021;8(3):2001730.
CrossRef
Google scholar
|
[32] |
Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors. Nat Electron. 2022;5(5):281-288.
CrossRef
Google scholar
|
[33] |
Qiu Q, Huang Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv Mater. 2021;33(15):2008126.
CrossRef
Google scholar
|
[34] |
Li H, Yang Z. Recent progress in mid-infrared photodetection devices using 2D/nD (n=0, 1, 2, 3) heterostructures. Mater Des. 2023;225:111446.
CrossRef
Google scholar
|
[35] |
Di Y, Ba K, Chen Y, et al. Interface engineering to drive highperformance MXene/PbS quantum dot NIR photodiode. Adv Sci. 2023:2307169.
CrossRef
Google scholar
|
[36] |
Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens FHL, Konstantatos G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater. 2015;27(1):176-180.
CrossRef
Google scholar
|
[37] |
Yu T, Wang F, Xu Y, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottkyjunction photodetectors. Adv Mater. 2016;28(24):4912-4919.
CrossRef
Google scholar
|
[38] |
Hu C, Dong D, Yang X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater. 2017;27(2):1603605.
CrossRef
Google scholar
|
[39] |
Peng M, Xie X, Zheng H, et al. PbS quantum dots/2D nonlayered CdSxSe1-x nanosheet hybrid nanostructure for highperformance broadband photodetectors. ACS Appl Mater Interfaces. 2018;10(50):43887-43895.
CrossRef
Google scholar
|
[40] |
Gong M, Sakidja R, Goul R, et al. High-performance allinorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano. 2019;13(2):1772-1783.
CrossRef
Google scholar
|
[41] |
Shi K, Li J, Xiao Y, et al. High-response, ultrafast-speed, and self-powered photodetection achieved in InP@ZnS-MoS2 phototransistors with interdigitated Pt electrodes. ACS Appl Mater Interfaces. 2020;12(28):31382-31391.
CrossRef
Google scholar
|
[42] |
Chang R, Wang K, Zhang Y, et al. Tunable performance of quantum dot-MoS2 hybrid photodetectors via interface engineering. ACS Appl Mater Interfaces. 2021;13(49):59411-59421.
CrossRef
Google scholar
|
[43] |
Zeng P, Wang W, Han D, et al. MoS2/WSe2 vdW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes. ACS Nano. 2022;16(6):9329-9338.
CrossRef
Google scholar
|
[44] |
Kim SH, Lee D, Moon S, et al. Sulfurized colloidal quantum dot/tungsten disulfide multi-dimensional heterojunction for an efficient self-powered visible-to-swir photodetector. Adv Funct Mater. 2023;33(43):2303778.
CrossRef
Google scholar
|
[45] |
Kara G, Bolat S, Sharma K, et al. Conformal integration of an inkjet-printed PbS QDs-graphene ir photodetector on a polymer optical fiber. Adv Mater Technol. 2023;8(9):2201922.
CrossRef
Google scholar
|
[46] |
Ilyas N, Wang J, Li C, et al. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv Funct Mater. 2022;32(15):2110976.
CrossRef
Google scholar
|
[47] |
Pradhan B, Das S, Li J, et al. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci Adv. 2020;6(7):eaay5225.
CrossRef
Google scholar
|
[48] |
Yang X, Zhou X, Li L, et al. Large-area black phosphorus/PtSe2 Schottky junction for high operating temperature broadband photodetectors. Small. 2023;19(28):2206590.
CrossRef
Google scholar
|
[49] |
Jia C, Wu S, Fan J, et al. Ferroelectrically modulated and enhanced photoresponse in a self-powered α-IN2Se3/Si heterojunction photodetector. ACS Nano. 2023;17(7):6534-6544.
CrossRef
Google scholar
|
[50] |
Li L, Chen H, Fang Z, et al. An electrically modulated singlecolor/dual-color imaging photodetector. Adv Mater. 2020;32(24):1907257.
CrossRef
Google scholar
|
[51] |
Chen J, Liu X, Li Z, Cao F, Lu X, Fang X. Work-functiontunable Mxenes electrodes to optimize p-CsCu2i3/n-Ca2Nb3-xTaxO10 junction photodetectors for image sensing and logic electronics. Adv Funct Mater. 2022;32(24):2201066.
CrossRef
Google scholar
|
[52] |
Zhang Q, Li N, Zhang T, et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat Commun. 2023;14(1):418.
CrossRef
Google scholar
|
[53] |
Xu K, Zhou W, Ning Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small. 2020;16(47):2003397.
CrossRef
Google scholar
|
[54] |
Hao D, Zou J, Huang J. Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat. 2020;2(1):139-169.
CrossRef
Google scholar
|
[55] |
Kim YT, Shin HW, Ko YS, Ahn TK, Kwon YU. Synthesis of a CdSe-graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics. Nanoscale. 2013;5(4):1483-1488.
CrossRef
Google scholar
|
[56] |
Pan A, Ma X, Huang S, et al. CsPbBr3 perovskite nanocrystal grown on Mxene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J Phys Chem Lett. 2019;10(21):6590-6597.
CrossRef
Google scholar
|
[57] |
Kang S, Kim KM, Jung K, et al. Graphene oxide quantum dots derived from coal for bioimaging: facile and green approach. Sci Rep. 2019;9(1):4101.
CrossRef
Google scholar
|
[58] |
Liu M, Xu Y, Niu F, Gooding JJ, Liu J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst. 2016;141(9):2657-2664.
CrossRef
Google scholar
|
[59] |
Chen L, Tseng Z, Chen S, Yang S. An ultrasonic synthesis method for high-luminance perovskite quantum dots. Ceram Int. 2017;43(17):16032-16035.
CrossRef
Google scholar
|
[60] |
Qiao ZA, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun. 2010;46(46):8812-8814.
CrossRef
Google scholar
|
[61] |
Zhang J, Zhang S, Zhang Y, et al. Colloidal quantum dots: synthesis, composition, structure, and emerging optoelectronic applications. Laser Photon Rev. 2023;17(3):2200551.
CrossRef
Google scholar
|
[62] |
Long Z, Tong X, Liu C, et al. Near-infrared, eco-friendly ZnAgInSe quantum dots-sensitized graphene oxide-TiO2 hybrid photoanode for high performance photoelectrochemical hydrogen generation. Chem Eng J. 2021;426:131298.
CrossRef
Google scholar
|
[63] |
Gong M, Liu Q, Cook B, et al. All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano. 2017;11:4114.
CrossRef
Google scholar
|
[64] |
Chan Y, Dahua Z, Jun Y, et al. Fabrication of hybrid graphene/CdS quantum dots film with the flexible photodetecting performance. Phys E. 2020;124:114216.
CrossRef
Google scholar
|
[65] |
Schornbaum J, Winter B, Schießl SP, et al. Epitaxial growth of PbSe quantum dots onMoS2 nanosheets and their near-infrared photoresponse. Adv Funct Mater. 2014;24(37):5798-5806.
CrossRef
Google scholar
|
[66] |
Singh RK, Kumar R, Singh DP, Savu R, Moshkalev SA. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater Today Chem. 2019;12:282-314.
CrossRef
Google scholar
|
[67] |
Zhang M, Liu W, Gong Y, Liu Q, Chen Z. Graphene/quantum dot heterostructure photodetectors: from material to performance. Adv Opt Mater. 2022;10(24):2201889.
CrossRef
Google scholar
|
[68] |
Shen L, Zhou S, Huang F, et al. Nitrogen-doped graphene quantum dots synthesized by femtosecond laser ablation in liquid from laser induced graphene. Nanotechnology. 2022;33(11):115602.
CrossRef
Google scholar
|
[69] |
Li X, Li L, Zhao H, et al. SnSe2 quantum dots: facile fabrication and application in highly responsive UV-detectors. Nanomaterials. 2019;9(9):1324.
CrossRef
Google scholar
|
[70] |
You Y, Tong X, Imran CA, et al. High-efficiency luminescent solar concentrators based on composition-tunable ecofriendly core/shell quantum dots. Chem Eng J. 2023;452:139490.
CrossRef
Google scholar
|
[71] |
Yuan Y, Zhu H, Wang X, et al. Cu-catalyzed synthesis of CdZnSe-CdZnS alloy quantum dots with highly tunable emission. Chem Mater. 2019;31(7):2635-2643.
CrossRef
Google scholar
|
[72] |
Wang J, Wang J, Xu Y, et al. Controlled synthesis of longwavelength multicolor-emitting carbon dots for highly efficient tandem luminescent solar concentrators. ACS Appl Energy Mater. 2020;3(12):12230-12237.
CrossRef
Google scholar
|
[73] |
Chen T, Ren Y, Xu Y, et al. Room-temperature ionic-liquidassisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs. J Alloys Compd. 2021;858:158084.
CrossRef
Google scholar
|
[74] |
Rocha AD, Menguy N, Yéprémian C, Brayner R. Ecotoxicological studies of ZnO and CdS nanoparticles on chlorella vulgaris photosynthetic microorganism in seine river water. Nanomaterials. 2020;10(2):227.
CrossRef
Google scholar
|
[75] |
Li X, Huang G, Wang H, et al. Weakening conformational locking for fine tuning of morphology and photovoltaic performance by introducing a third component. Chem Eng J. 2021;422:130097.
CrossRef
Google scholar
|
[76] |
Won YH, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature. 2019;575(7784):634-638.
CrossRef
Google scholar
|
[77] |
Su D, Wang L, Li M, et al. Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs. J Alloys Compd. 2020;824:153896.
CrossRef
Google scholar
|
[78] |
Saeedzadeh AN, Milani HM. Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitopeimprinted polymers for highly efficient determination of tyrosine phosphopeptide. Anal Methods. 2020;12(1):63-72.
CrossRef
Google scholar
|
[79] |
Zhou C, Chen Y, Huang M, et al. A pH and UCST thermoresponsive tri-block copolymer (PAA-b-PDMA-b-P(AM-co-AN)) with micellization and gelatinization in aqueous media for drug release. New J Chem. 2020;44(34):14551-14559.
CrossRef
Google scholar
|
[80] |
Aenishanslins N, Anziani OG, Monrás JP, et al. Bacterial synthesis of ternary CdSAg quantum dots through cation exchange: tuning the composition and properties of biological nanoparticles for bioimaging and photovoltaic applications. Microorganisms. 2020;8(5):631.
CrossRef
Google scholar
|
[81] |
Cai M, Tong X, Zhao H, et al. Ligand-engineered quantum dots decorated heterojunction photoelectrodes for selfbiased solar water splitting. Small. 2022;18(46):2270251.
CrossRef
Google scholar
|
[82] |
Tong X, Channa AI, You Y, et al. Boosting the performance of eco-friendly quantum dots-based photoelectrochemical cells via effective surface passivation. Nano Energy. 2020;76:105062.
CrossRef
Google scholar
|
[83] |
Fu X, Ilanchezhiyan P, Mohan Kumar G, et al. Tunable UVvisible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation. Nanoscale. 2017;9(5):1820-1826.
CrossRef
Google scholar
|
[84] |
Tanaka J, Suzuki S, Hatta R, Mukai K. Improvement of monodispersity of PbS quantum dots by filtration with organic solvent-resistant polyamide hollow fiber membranes. Jpn J Appl Phys. 2023;62(SG):SG1004.
CrossRef
Google scholar
|
[85] |
Kim DH, Cho H, Lee MJ, et al. Separation of extremely small indium oxide quantum dots and their highly luminescent properties by dispersing agent. J Alloys Compd. 2022;921:166073.
CrossRef
Google scholar
|
[86] |
Lim H, Woo JY, Lee DC, et al. Continuous purification of colloidal quantum dots in large-scale using porous electrodes in flow channel. Sci Rep. 2017;7(1):43581.
CrossRef
Google scholar
|
[87] |
Liu Z, Zhang Z, Zhang X, et al. Achieving high responsivity and detectivity in a quantum-dot-in-perovskite photodetector. Nano Lett. 2023;23(4):1181-1188.
CrossRef
Google scholar
|
[88] |
Shen JH, Yu XQ, Tu WC. Multifunctional and highperformance FAPBi3 quantum dots/graphene uv photodetectors by the modulation of photoconductivity. Adv Opt Mater. 2023;11(17):2300410.
CrossRef
Google scholar
|
[89] |
Lien MR, Wang N, Guadagnini S, et al. Black phosphorus molybdenum disulfide midwave infrared photodiodes with broadband absorption-increasing metasurfaces. Nano Lett. 2023;23(21):9980-9987.
CrossRef
Google scholar
|
[90] |
Zhang C, Peng S, Han J, et al. Fully-depleted PdTe2/WSe2 van der Waals field effect transistor with high light on/off ratio and broadband detection. Adv Funct Mater. 2023;33(40):2302466.
CrossRef
Google scholar
|
[91] |
Novoselov KS, Mishchenko A, Carvalho A, Castro NA. 2D materials and van der Waals heterostructures. Science. 2016;353(6298):aaC9439.
CrossRef
Google scholar
|
[92] |
Sablon K, Sergeev A, Najmaei S, Dubey M. High-response hybrid quantum dots-2D conductor phototransistors: recent progress and perspectives. Nanophotonics. 2017;6.
CrossRef
Google scholar
|
[93] |
Chetia A, Bera J, Betal A, Sahu S. A brief review on photodetector performance based on zero dimensional and two dimensional materials and their hybrid structures. Mater Today Commun. 2022;30:103224.
CrossRef
Google scholar
|
[94] |
Gao L. Flexible device applications of 2D semiconductors. Small. 2017;13(35):1603994.
CrossRef
Google scholar
|
[95] |
Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013;340(6139):1226419.
CrossRef
Google scholar
|
[96] |
Hu G, Kang J, Ng LW, et al. Functional inks and printing of twodimensional materials. Chem Soc Rev. 2018;47(9):3265-3300.
CrossRef
Google scholar
|
[97] |
Yang C, Wang G, Liu M, Yao F, Li H. Mechanism, material, design, and implementation principle of two-dimensional material photodetectors. Nanomaterials. 2021;11(10):2688.
CrossRef
Google scholar
|
[98] |
Liu F, Li P, An H, et al. Achievements and challenges of graphene chemical vapor deposition growth. Adv Funct Mater. 2022;32(42):2203191.
CrossRef
Google scholar
|
[99] |
Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol. 2021;16(11):1201-1207.
CrossRef
Google scholar
|
[100] |
Bothra U, Albaladejo SM, Vaynzof Y, Kabra D. Impact of ligands on the performance of pbs quantum dot visible-nearinfrared photodetectors. Adv Opt Mater. 2023;11(1):2201897.
CrossRef
Google scholar
|
[101] |
Zhou N, Zhao H, Li X, et al. Activating earth-abundant element-based colloidal copper chalcogenide quantum dots for photodetector and optoelectronic synapse applications. ACS Mater Lett. 2023;5(4):1209-1218.
CrossRef
Google scholar
|
[102] |
Kundu B, Ödemir O, Dalmases M, Kumar G, Konstantatos G. Hybrid 2D-QD MoS2-PbSe quantum dot broadband photodetectors with high-sensitivity and room-temperature operation at 2.5 µm. Adv Opt Mater. 2021;9(22):2101378.
CrossRef
Google scholar
|
[103] |
Yang Z, Wang M, Li J, et al. Spray-coated CsPbBr3 quantum dot films for perovskite photodiodes. ACS Appl Mater Interfaces. 2018;10(31):26387-26395.
CrossRef
Google scholar
|
[104] |
Chen W, Tang H, Chen Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy. 2020;78:105254.
CrossRef
Google scholar
|
[105] |
Song K, Yuan J, Shen T, et al. Spray coated colloidal quantum dot films for broadband photodetectors. Nanomaterials. 2019;9(12):1738.
CrossRef
Google scholar
|
[106] |
Nguyen DA, Oh HM, Duong NT, et al. Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces. 2018;10(12):10322-10329.
CrossRef
Google scholar
|
[107] |
Cook B, Gong M, Ewing D, et al. Inkjet printing multicolor pixelated quantum dots on graphene for broadband photodetection. ACS Appl Nano Mater. 2019;2(5):3246-3252.
CrossRef
Google scholar
|
[108] |
Schwierz F. Graphene transistors. Nat Nanotechnol. 2010;5(7):487-496.
CrossRef
Google scholar
|
[109] |
Lemme MC, Koppens FH, Falk AL, et al. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 2011;11(10):4134-4137.
CrossRef
Google scholar
|
[110] |
Gabor NM, Song JC, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science. 2011;334(6056):648-652.
CrossRef
Google scholar
|
[111] |
Xia F, Han W, Di X, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nat Photonics. 2014;8(12):899-907.
CrossRef
Google scholar
|
[112] |
Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater. 2019;29(19):1803807.
CrossRef
Google scholar
|
[113] |
Litvin AP, Martynenko IV, Purcell MF, Baranov AV, Fedorov AV, Gun’ko YK. Colloidal quantum dots for optoelectronics. J Mater Chem A. 2017;5(26):13252-13275.
CrossRef
Google scholar
|
[114] |
Shao D, Sun X, Xie M, et al. ZnO quantum dots-graphene composite for efficient ultraviolet sensing. Mater Lett. 2013;112:165-168.
CrossRef
Google scholar
|
[115] |
Zhu M, Zhang L, Li X, et al. TiO2 enhanced ultraviolet detection based on a graphene/Si Schottky diode. J Mater Chem A. 2015;3(15):8133-8138.
CrossRef
Google scholar
|
[116] |
Guo W, Xu S, Wu Z, Wang N, Loy MMT, Du S. Oxygenassisted charge transfer between ZnO quantum dots and graphene. Small. 2013;9(18):3031-3036.
CrossRef
Google scholar
|
[117] |
Boruah BD, Misra A. ZnO quantum dots and graphene based heterostructure for excellent photoelastic and highly sensitive ultraviolet photodetector. RSC Adv. 2015;5(110):90838--90846.
CrossRef
Google scholar
|
[118] |
Mukherjee S, Bhattacharya D, Patra S, et al. High-responsivity gate-tunable ultraviolet-visible broadband phototransistor based on graphene-WS2 mixed-dimensional (2D-0D) heterostructure. ACS Appl Mater Interfaces. 2022;14(4):5775-5784.
CrossRef
Google scholar
|
[119] |
Shao D, Gao J, Chow P, et al. Organic-inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Lett. 2015;15(6):3787-3792.
CrossRef
Google scholar
|
[120] |
Bai Y, Hao M, Ding S, Chen P, Wang L. Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives. Adv Mater. 2022;34(4):2105958.
CrossRef
Google scholar
|
[121] |
Zhao W, Ghorannevis Z, Chu L, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano. 2013;7(1):791-797.
CrossRef
Google scholar
|
[122] |
Carvalho A, Ribeiro RM, Castro NA. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys Rev B. 2013;88(11):115205.
CrossRef
Google scholar
|
[123] |
Fadil D, Hossain RF, Saenz GA, Kaul AB. On the chemicallyassisted excitonic enhancement in environmentally-friendly solution dispersions of two-dimensional MoS2 and WS2. J Mater Chem C. 2017;5(22):5323-5333.
CrossRef
Google scholar
|
[124] |
Ahmad S, Kanaujia P, Beeson H, et al. Strong photocurrent from 2D excitons in solution-processed stacked perovskite semiconductor sheets. ACS Appl Mater Interfaces. 2015;7(45):25227-25236.
CrossRef
Google scholar
|
[125] |
Chen X, Yang C, Sun H, et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottkyjunction photodetector. Laser Phys Lett. 2019;16(7):076201.
CrossRef
Google scholar
|
[126] |
Grotevent MJ, Hail CU, Yakunin S, et al. Nanoprinted quantum dot-graphene photodetectors. Adv Opt Mater. 2019;7(11):1900019.
CrossRef
Google scholar
|
[127] |
Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol. 2012;7(6):363-368.
CrossRef
Google scholar
|
[128] |
Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano. 2017;11(10):9854-9862.
CrossRef
Google scholar
|
[129] |
Grotevent MJ, Hail CU, Yakunin S, et al. Temperaturedependent charge carrier transfer in colloidal quantum dot/graphene infrared photodetectors. ACS Appl Mater Interfaces. 2021;13:848.
CrossRef
Google scholar
|
[130] |
Zheng L, Zhou W, Ning Z, et al. Ambipolar graphene-quantum dot phototransistors with CMOS compatibility. Adv Opt Mater. 2018;6(23):1800985.
CrossRef
Google scholar
|
[131] |
Mangolini L. Synthesis, properties, and applications of silicon nanocrystals. J Vac Sci Technol B. 2013;31(2):020801.
CrossRef
Google scholar
|
[132] |
Dohnalová K, Gregorkiewicz T, Kůsová K. Silicon quantum dots: surface matters. J Phys Condens Matter. 2014;26(17):173201.
CrossRef
Google scholar
|
[133] |
Wu JZ, Gong M. Nanohybrid photodetectors. Adv Photonics Res. 2021;2(7):2100015.
CrossRef
Google scholar
|
[134] |
Caldwell JD, Vurgaftman I, Tischler JG, Glembocki OJ, Owrutsky JC, Reinecke TL. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat Nanotechnol. 2016;11(1):9-15.
CrossRef
Google scholar
|
[135] |
Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349(6244):165-168.
CrossRef
Google scholar
|
[136] |
Liang G, Yu X, Hu X, Qiang B, Wang C, Wang QJ. Midinfrared photonics and optoelectronics in 2D materials. Mater Today. 2021;51:294-316.
CrossRef
Google scholar
|
[137] |
Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 2016;16(2):1282-1286.
CrossRef
Google scholar
|
[138] |
Grotevent MJ, Hail CU, Yakunin S, et al. Colloidal HgTe quantum dot/graphene phototransistor with a spectral sensitivity beyond 3 µm. Adv Sci. 2021;8(6):2003360.
CrossRef
Google scholar
|
[139] |
Sun Z, Liu Z, Li J, Tai G, Lau S, Yan F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater. 2012;24(43):5878-5883.
CrossRef
Google scholar
|
[140] |
Ahn S, Chen W, Vazquez MO. High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity via photolithography with a top graphene layer to protect surface ligands. Nanoscale Adv. 2021;3(21):6206-6212.
CrossRef
Google scholar
|
[141] |
Zhao Y, Feng X, Zhao M, et al. High-performance nearinfrared photodetectors based on C3N quantum dots integrated with single-crystal graphene. J Mater Chem C. 2021;9(4):1333-1338.
CrossRef
Google scholar
|
[142] |
Singh VK, Yadav S M, Mishra H, et al. WS2 quantum dot graphene nanocomposite film for uv photodetection. ACS Appl Nano Mater. 2019;2(6):3934-3942.
CrossRef
Google scholar
|
[143] |
Jiang J, Wen Y, Wang H, et al. Recent advances in 2D materials for photodetectors. Adv Electron Mater. 2021;7(7):2001125.
CrossRef
Google scholar
|
[144] |
Wang J, Han J, Chen X, Wang X. Design strategies for twodimensional material photodetectors to enhance device performance. InfoMat. 2019;1(1):33-53.
CrossRef
Google scholar
|
[145] |
Bernardi M, Palummo M, Grossman J. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013;13(8):3664-3670.
CrossRef
Google scholar
|
[146] |
Nalwa HS. A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv. 2020;10(51):30529-30602.
CrossRef
Google scholar
|
[147] |
Goodman AJ, Dahod NS, Tisdale WA. Ultrafast charge transfer at a quantum dot/2D materials interface probed by second harmonic generation. J Phys Chem Lett. 2018;9(15):4227-4232.
CrossRef
Google scholar
|
[148] |
Boulesbaa A, Wang K, Mahjouri-Samani M, et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc. 2016;138(44):14713-14719.
CrossRef
Google scholar
|
[149] |
Raja A, Montoya CA, Zultak J, et al. Energy transfer from quantum dots to graphene and MoS2: the role of absorption and screening in two-dimensional materials. Nano Lett. 2016;16(4):2328-2333.
CrossRef
Google scholar
|
[150] |
Zhang S, Wang X, Chen Y, et al. Ultrasensitive hybrid MoS2-ZnCdSe quantum dot photodetectors with high gain. ACS Appl Mater Interfaces. 2019;11(26):23667-23672.
CrossRef
Google scholar
|
[151] |
Ödemir O, Ramiro I, Gupta S, Konstantatos G. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 µm. ACS Photonics. 2019;6(10):2381-2386.
CrossRef
Google scholar
|
[152] |
Kim Y, Chang JH, Choi H, et al. III-V colloidal nanocrystals: control of covalent surfaces. Chem Sci. 2020;11(4):913-922.
CrossRef
Google scholar
|
[153] |
Zhu Y, Raj V, Li Z, et al. Self-powered InP nanowire photodetector for single-photon level detection at room temperature. Adv Mater. 2021;33(49):2105729.
CrossRef
Google scholar
|
[154] |
Pak S, Cho Y, Hong J, et al. Consecutive junction-induced efficient charge separation mechanisms for highperformance MoS2/quantum dot phototransistors. ACS Appl Mater Interfaces. 2018;10(44):38264-38271.
CrossRef
Google scholar
|
[155] |
Chen Y, Wang Y, Wang Z, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat Electron. 2021;4(5):357-363.
CrossRef
Google scholar
|
[156] |
Kufer D, Lasanta T, Bernechea M, Koppens FHL, Konstantatos G. Interface engineering in hybrid quantum dot-2D phototransistors. ACS Photonics. 2016;3(7):1324-1330.
CrossRef
Google scholar
|
[157] |
Nandan Y, Mehata MS. Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantumdots. Sci Rep. 2019;9(1):2.
CrossRef
Google scholar
|
[158] |
Sahu A, Kumar D. Core-shell quantum dots: a review on classification, materials, application, and theoretical modeling. J Alloys Compd. 2022;924:166508.
CrossRef
Google scholar
|
[159] |
Zang H, Routh PK, Huang Y, et al. Nonradiative energy transfer from individual CdSe/ZnS quantum dots to single-layer and few-layer tin disulfide. ACS Nano. 2016;10(4):4790-4796.
CrossRef
Google scholar
|
[160] |
Qiao S, Liu J, Wang R, et al. Dual mechanism WS2-WSe2 lateral monolayer heterojunction photodetector and its photoresponse enhancement by hybridizing with CsPbBr3 QDs. Adv Opt Mater. 2023;11(21):2300751.
CrossRef
Google scholar
|
[161] |
Moreels I, Justo Y, Geyter BD, et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano. 2011;5(3):2004-2012.
CrossRef
Google scholar
|
[162] |
Balazs DM, Bijlsma KI, Fang HH, et al. Stoichiometric control of the density of states in PbS colloidal quantum dot solids. Sci Adv. 2017;3(9):eaaO1558.
CrossRef
Google scholar
|
[163] |
Zhou H, Wang C, Shaw JC, et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015;15(1):709-713.
CrossRef
Google scholar
|
[164] |
Hu L, Zhao Q, Huang S, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat Commun. 2021;12(1):466.
CrossRef
Google scholar
|
[165] |
Wheeler LM, Sanehira EM, Marshall AR, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J Am Chem Soc. 2018;140(33):10504-10513.
CrossRef
Google scholar
|
[166] |
Roo JD, Ibáñez M, Geiregat P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano. 2016;10(2):2071-2081.
CrossRef
Google scholar
|
[167] |
Moon B, Ahn JH, Jeong MH, Lee SH, Lee JS. High-performance and stability of CsPbBr3/WSe2 hybrid photodetectors functionalized using quaternary ammonium ligands. Adv Opt Mater. 2023;11(17):2300414.
CrossRef
Google scholar
|
[168] |
Zhang Z, Chen P, Duan X, et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science. 2017;357(6353):788-792.
CrossRef
Google scholar
|
[169] |
Li MY, Shi Y, Cheng CC, et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science. 2015;349(6247):524-528.
CrossRef
Google scholar
|
[170] |
Huang C, Wu S, Sanchez AM, et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater. 2014;13(12):1096-1101.
CrossRef
Google scholar
|
[171] |
Sahoo PK, Memaran S, Xin Y, Balicas L, Gutiérrez HR. Onepot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature. 2018;553(7686):63-67.
CrossRef
Google scholar
|
[172] |
Tang L, Ji R, Li X, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered n-doped graphene quantum dots. ACS Nano. 2014;8(6):6312-6320.
CrossRef
Google scholar
|
[173] |
Hu C, Liu Y, Yang Y, et al. One-step preparation of nitrogendoped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B. 2013;1(1):39-42.
CrossRef
Google scholar
|
[174] |
Chang Y, Wang J, Wu F, Tian W, Zhai W. Structural design and pyroelectric property of SnS/CdS heterojunctions contrived for low-temperature visible photodetectors. Adv Funct Mater. 2020;30(23):2001450.
CrossRef
Google scholar
|
[175] |
Krishnamurthi V, Khan H, Ahmed T, et al. Liquid-metal synthesized ultrathin SnS layers for high-performance broadband photodetectors. Adv Mater. 2020;32(45):2004247.
CrossRef
Google scholar
|
[176] |
Lee HS, Cho JY, Nandi R, et al. Influence of the temperature ramping rate on the performance of vapor transport deposited SnS thin-film solar cells. ACS Appl Energy Mater. 2020;3(11):10393-10401.
CrossRef
Google scholar
|
[177] |
Rath T, Gury L, Sánchez MI, Martínez L, Haque SA. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem Commun. 2015;51(50):10198-10201.
CrossRef
Google scholar
|
[178] |
Selamneni V, Anand PP, Singh A, Sahatiya P. Hybrid 0D-2D WS2-QDs (n)/SnS (p) as distributed heterojunctions for highly responsive flexible broad-band photodetectors. ACS Appl Electron Mater. 2021;3(9):4105-4114.
CrossRef
Google scholar
|
[179] |
Ra HS, Kwak DH, Lee JS. A hybrid MoS2 nanosheet-CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale. 2016;8(39):17223-17230.
CrossRef
Google scholar
|
[180] |
Huo N, Gupta S, Konstantatos G. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm. Adv Mater. 2017;29(17):1606576.
CrossRef
Google scholar
|
[181] |
Song X, Liu X, Yu D, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces. 2018;10(3):2801-2809.
CrossRef
Google scholar
|
[182] |
Wu H, Si H, Zhang Z, et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv Sci. 2018;5(12):1801219.
CrossRef
Google scholar
|
[183] |
Li M, Chen JS, Routh PK, Zahl P, Nam C, Cotlet M. Distinct optoelectronic signatures for charge transfer and energy transfer in quantum dot-MoS2 hybrid photodetectors revealed by photocurrent imaging microscopy. Adv Funct Mater. 2018;28(29):1707558.
CrossRef
Google scholar
|
[184] |
Qin S, Li K, Zhu J, et al. A new strategy to improve the performance of MoS2-based 2D photodetector by synergism of colloidal CuInS2 quantum dots and surface plasma resonance of noble metal nanoparticles. J Alloys Compd. 2021;856:158179.
CrossRef
Google scholar
|
[185] |
Wang X, Yan D, Zhu C, et al. Ultrasensitive photodetector based on 2D WS2/AgInGaS quantum dots heterojunction with interfacial charge transfer. 2D Mater. 2023;10(4):045020.
CrossRef
Google scholar
|
[186] |
Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372-377.
CrossRef
Google scholar
|
[187] |
Cai Y, Zhang G, Zhang Y. Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep. 2014;4(1):6677.
CrossRef
Google scholar
|
[188] |
Wu J, Koon GK, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano. 2015;9(8):8070-8077.
CrossRef
Google scholar
|
[189] |
Chen X, Lu X, Deng B, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun. 2017;8(1):1672.
CrossRef
Google scholar
|
[190] |
Kwak D, Ra H, Yang J, et al. Recovery mechanism of degraded black phosphorus field-effect transistors by 1, 2-ethanedithiol chemistry and extended device stability. Small. 2018;14(6):1703194.
CrossRef
Google scholar
|
[191] |
Zha J, Luo M, Ye M, et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv Funct Mater. 2022;32(15):2111970.
CrossRef
Google scholar
|
[192] |
Lee AY, Ra HS, Kwak DH, et al. Hybrid black phosphorus/zero-dimensional quantum dot phototransistors: tunable photodoping and enhanced photoresponsivity. ACS Appl Mater Interfaces. 2018;10(18):16033-16040.
CrossRef
Google scholar
|
[193] |
You C, Zhang G, Deng W, et al. Cascade-type energy band design of a black phosphorus photodetector with high performance. J Mater Chem C. 2019;7(8):2232-2239.
CrossRef
Google scholar
|
[194] |
Brown PR, Kim D, Lunt RR, et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano. 2014;8(6):5863-5872.
CrossRef
Google scholar
|
[195] |
Milliron DJ. The surface plays a core role. Nat Mater. 2014;13(8):772-773.
CrossRef
Google scholar
|
[196] |
Harris RD, Homan BS, Kodaimati M, et al. Electronic processes within quantum dot-molecule complexes. Chem Rev. 2016;116(21):12865-12919.
CrossRef
Google scholar
|
[197] |
Liu W, Lee JS, Talapin DV. III-V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse. J Am Chem Soc. 2013;135(4):1349-1357.
CrossRef
Google scholar
|
[198] |
Wu J, Yuan H, Meng M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol. 2017;12(6):530-534.
CrossRef
Google scholar
|
[199] |
Chen C, Wang M, Wu J, et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci Adv. 2018;4(9):eaat8355.
CrossRef
Google scholar
|
[200] |
Yin J, Tan Z, Hong H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun. 2018;9(1):3311.
CrossRef
Google scholar
|
[201] |
Luo P, Zhuge F, Wang F, et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 µm. ACS Nano. 2019;13(8):9028-9037.
CrossRef
Google scholar
|
[202] |
Dou Y, Zhang L, Xu X, Sun Z, Liao T, Dou SX. Atomically thin non-layered nanomaterials for energy storage and conversion. Chem Soc Rev. 2017;46(23):7338-7373.
CrossRef
Google scholar
|
[203] |
Xie Z, Xing C, Huang W, et al. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater. 2018;28(16):1705833.
CrossRef
Google scholar
|
[204] |
Peng M, Ma Y, Zhang L, et al. All-Inorganic CsPbBr3 perovskite nanocrystals/2D non-layered cadmium sulfide selenide for high-performance photodetectors by energy band alignment engineering. Adv Funct Mater. 2021;31(42):2105051.
CrossRef
Google scholar
|
[205] |
Guo Z, Liu J, Han X, et al. High-performance artificial synapse based on CVD-grown WSe2 flakes with intrinsic defects. ACS Appl Mater Interfaces. 2023;15(15):19152-19162.
CrossRef
Google scholar
|
[206] |
He Y, Nie S, Liu R, Jiang S, Shi Y, Wan Q. Spatiotemporal information processing emulated by multiterminal neurotransistor networks. Adv Mater. 2019;31(21):1900903.
CrossRef
Google scholar
|
[207] |
Choi S, Yang J, Wang G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv Mater. 2020;32(51):2004659.
CrossRef
Google scholar
|
[208] |
Kim MK, Lee JS. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv Mater. 2020;32(12):1907826.
CrossRef
Google scholar
|
[209] |
Wang X, Yang H, Li E, et al. Stretchable transistor-structured artificial synapses for neuromorphic electronics. Small. 2023;19(18):2205395.
CrossRef
Google scholar
|
[210] |
He Y, Yang Y, Nie S, Liu R, Wan Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J Mater Chem C. 2018;6(20):5336-5352.
CrossRef
Google scholar
|
[211] |
Liang K, Wang R, Huo B, et al. Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano. 2022;16(6):8651-8661.
CrossRef
Google scholar
|
[212] |
Lee Y, Lee TW. Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics. Acc Chem Res. 2019;52(4):964-974.
CrossRef
Google scholar
|
[213] |
Jeong YJ, Yun DJ, Noh SH, Park CE, Jang J. Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories. ACS Nano. 2018;12(8):7701-7709.
CrossRef
Google scholar
|
[214] |
Wang Y, Yin L, Huang S, et al. Silicon-nanomembrane-based broadband synaptic phototransistors for neuromorphic vision. Nano Lett. 2023;23(18):8460-8467.
CrossRef
Google scholar
|
[215] |
Zhang J, Guo Z, Sun T, et al. Energy-efficient organic photoelectric synaptic transistors with environment-friendly CuInSe2 quantum dots for broadband neuromorphic computing. SmartMat. 2023:e1246.
CrossRef
Google scholar
|
[216] |
Zhu J, Tang Y, Wang G, et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl Mater Interfaces. 2017;9(16):14470-14477.
CrossRef
Google scholar
|
[217] |
Sun Y, Ding Y, Xie D, et al. Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity. Adv Opt Mater. 2021;9(12):2002232.
CrossRef
Google scholar
|
[218] |
Cheng Y, Li H, Liu B, et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small. 2020;16(45):2005217.
CrossRef
Google scholar
|
[219] |
Hou Y, Li Y, Zhang Z, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano. 2021;15(1):1497-1508.
CrossRef
Google scholar
|
[220] |
Tang J, Yuan F, Shen X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater. 2019;31(49):1902761.
CrossRef
Google scholar
|
[221] |
Choi C, Leem J, Kim M, et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat Commun. 2020;11(1):5934.
CrossRef
Google scholar
|
[222] |
Cho SW, Kwon SM, Kim YH, Park SK. Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv Intell Syst. 2021;3(6):2000162.
CrossRef
Google scholar
|
[223] |
Xie D, Li Y, He J, Jiang J. 0D-carbon-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor for emulating pulsatile photoelectric therapy of visual amnesic behaviors. Sci China Mater. 2023;66:4814-4824.
CrossRef
Google scholar
|
[224] |
Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev. 2019;119(8):5461-5533.
CrossRef
Google scholar
|
[225] |
Liu L, Xu W, Ni Y, et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano. 2022;16(2):2282-2291.
CrossRef
Google scholar
|
/
〈 | 〉 |