Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes
Chen Liu, Yuxin Zhu, Shuanlong Di, Jiarui He, Ping Niu, Antonios Kelarakis, Marta Krysmann, Shulan Wang, Li Li
Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes
Ineffective control of dendrite growth and side reactions on Zn anodessignificantly retards commercialization of aqueous Zn-ion batteries. Unlikeconventional interfacial modification strategies that are primarilyfocused on component optimization or microstructural tuning, herein, wepropose a crystallinity engineering strategy by developing highly crystallinecarbon nitride protective layers for Zn anodes through molten salttreatment. Interestingly, the highly ordered structure along with sufficientfunctional polar groups and pre-intercalated K+ endows the coating withhigh ionic conductivity, strong hydrophilicity, and accelerated ion diffusionkinetics. Theoretical calculations also confirm its enhanced Znadsorption capability compared to commonly reported carbon nitridewith amorphous or semi-crystalline structure and bare Zn. Benefitingfrom the aforementioned features, the as-synthesized protective layerenables a calendar lifespan of symmetric cells for 1100 h and outstandingstability of full cells with capacity retention of 91.5% after 1500 cycles. Thiswork proposes a new conceptual strategy for Zn anode protection.
crystalline carbon nitride / crystallinity engineering / long cycling life / uniform Zn deposition / Zn metal anode
[1] |
ZhangN, WangJ-C, GuoY-F, Wang P-F, ZhuY-R, YiT-F. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord Chem Rev. 2023;479:215009.
CrossRef
Google scholar
|
[2] |
LiuH, CaiX, ZhiX, et al. An amorphous anode for proton battery. Nano-Micro Lett. 2022;15(1):24. https://doi.org/10.1007/s40820-022-00987-2
|
[3] |
ZhangN, ChenX, YuM, NiuZ, ChengF, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203-4219.
CrossRef
Google scholar
|
[4] |
VermaV, ChanRM, YangLJ, et al. Chelating ligands as electrolyte solvent for rechargeable zinc-ion batteries. Chem Mater. 2021;33(4):1330-1340.
CrossRef
Google scholar
|
[5] |
HaoJ, YuanL, YeC, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed. 2021;60(13):7366-7375.
CrossRef
Google scholar
|
[6] |
MaL, LiQ, YingY, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33(12):2007406.
CrossRef
Google scholar
|
[7] |
ShiX, WangJ, YangF, Liu X, YuY, LuX. Metallic zinc anode working at 50 and 50 mAh cm−2 with high depth of discharge via electrical double layer reconstruction. Adv Funct Mater. 2023;33(7):2211917.
CrossRef
Google scholar
|
[8] |
FangY, XieX, ZhangB, et al. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Mater. 2022;32(14):2109671.
CrossRef
Google scholar
|
[9] |
YiZ, LiuJ, TanS, et al. An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv Mater. 2022;34(37):2203835.
CrossRef
Google scholar
|
[10] |
HuoX, XuL, XieK, et al. Cation-selective interface for kinetically enhanced dendrite-free Zn anodes. Adv Energy Mater. 2023;13(20):2203066.
CrossRef
Google scholar
|
[11] |
LiuH, YeQ, LeiD, et al. Molecular brush: an ion-redistributor to homogenize fast Zn2+ flux and deposition for calendar-life Zn batteries. Energy Environ Sci. 2023;16(4):1610-1619.
CrossRef
Google scholar
|
[12] |
DiS, NieX, MaG, et al. Zinc anode stabilized by an organicinorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021;43:375-382.
CrossRef
Google scholar
|
[13] |
WangY, LiH, ChenS, et al. An ultralong-life SnS-based anode through phosphate-induced structural regulation for highperformance sodium ion batteries. Sci Bull. 2022;67(20):2085-2095.
CrossRef
Google scholar
|
[14] |
WangY, NiuP, LiJ, WangS, LiL. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Mater. 2021;34:436-460.
CrossRef
Google scholar
|
[15] |
WangJ, LiuZ, QuB, et al. g-C3N4 in situ derived ionicelectronic dual-conducting interlayer with N-rich sites for long lifespan sodium metal anodes. Energy Storage Mater. 2023;59:102793.
CrossRef
Google scholar
|
[16] |
ZhaiB, LiH, GaoG, et al. A crystalline carbon nitride based near-infrared active photocatalyst. Adv Funct Mater. 2022;32(47):2207375.
CrossRef
Google scholar
|
[17] |
DiS, LiH, ZhaiB, et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc Natl Acad Sci USA. 2023;120(33):e2302375120.
CrossRef
Google scholar
|
[18] |
WangY, LinX, WangL, Yang Y, ZhangY, PanA. Tailoring the crystal-chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes. Adv Funct Mater. 2023;33(13):2211088.
CrossRef
Google scholar
|
[19] |
LiH, DiS, NiuP, WangS, WangJ, Li L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ Sci. 2022;15(4):1601-1610.
CrossRef
Google scholar
|
[20] |
LinL, YuZ, WangX. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew Chem Int Ed. 2019;58(19):6164-6175.
CrossRef
Google scholar
|
[21] |
WangP, LiangS, ChenC, et al. Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv Mater. 2022;34(33):2202733.
CrossRef
Google scholar
|
[22] |
LiH, ChengB, XuJ, YuJ, CaoS. Crystalline carbon nitrides for photocatalysis. EES Catal. 2024. https://doi.org/10.1039/D3EY00302G
|
[23] |
MohanG, Venkataraman M, Gomez-VidalJ, CoventryJ. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides. Sol Energy. 2018;176:350-357.
CrossRef
Google scholar
|
[24] |
SunK, WangY, ChangC, et al. Molten-salt synthesis of crystalline C3N4/C nanosheet with high sodium storage capability. ChemEng J. 2021;425:131591.
CrossRef
Google scholar
|
[25] |
LinL, RenW, WangC, Asiri AM, ZhangJ, WangX. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. Appl Catal B Environ. 2018;231:234-241.
CrossRef
Google scholar
|
[26] |
WuS, YuH, ChenS, Quan X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020;10(24):14380-14389.
CrossRef
Google scholar
|
[27] |
LiangY, WuX, LiuX, LiC, LiuS. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl Catal B Environ. 2022;304:120978.
CrossRef
Google scholar
|
[28] |
LinL, OuH, ZhangY, Wang X. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016;6(6):3921-3931.
CrossRef
Google scholar
|
[29] |
ZhangH, LiS, XuL, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv Energy Mater. 2022;12(26):2200665.
CrossRef
Google scholar
|
[30] |
KeJ, WenZ, YangY, et al. Tailoring anion association strength through polycation-anion coordination mechanism in imidazole polymeric ionic liquid-based artificial interphase toward durable Zn metal anodes. Adv Funct Mater. 2023;33(26):2301129.
CrossRef
Google scholar
|
[31] |
WangS, YuanC, ChangN, et al. Act in contravention: a nonplanar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci Bull. 2021;66(9):889-896.
CrossRef
Google scholar
|
[32] |
LiY, WangB, XiangQ-J, Zhang Q, ChenG. Alkali metalmodified crystalline carbon nitride for photocatalytic nitrogen fixation. Dalton Trans. 2022;51(43):16527-16535.
CrossRef
Google scholar
|
[33] |
ZhangQ, LuanJ, HuangX, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat Commun. 2020;11(1):3961.
CrossRef
Google scholar
|
[34] |
QiuM, SunP, WangY, Ma L, ZhiC, MaiW. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew Chem Int Ed. 2022;61(44):e202210979.
CrossRef
Google scholar
|
[35] |
ZhuM, HuJ, LuQ, et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skinmountable microbattery. Adv Mater. 2021;33(8):2007497.
CrossRef
Google scholar
|
[36] |
HongL, WuX, WangL-Y, et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano. 2022;16(4):6906-6915.
CrossRef
Google scholar
|
[37] |
WangL, HuangW, GuoW, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv Funct Mater. 2022;32(1):2108533.
CrossRef
Google scholar
|
[38] |
CaoZ, ZhuX, XuD, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021;36:132-138.
CrossRef
Google scholar
|
[39] |
SoS, AhnYN, KoJ, KimIT, HurJ. Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 2022;52:40-51.
CrossRef
Google scholar
|
[40] |
HongL, WangL-Y, WangY, et al. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci. 2022;9(6):2104866.
CrossRef
Google scholar
|
[41] |
WangT, WangP, PanL, et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv Energy Mater. 2023;13(5):2203523.
CrossRef
Google scholar
|
[42] |
ZhengJ, ZhuG, LiuX, et al. Simultaneous dangling bond and zincophilic site engineering of SiNx protective coatings toward stable zinc anodes. ACS Energy Lett. 2022;7(12):4443-4450.
CrossRef
Google scholar
|
[43] |
YuH, ChenY, WeiW, JiX, ChenL. A functional organic zincchelate formation with nanoscaled granular structure enabling long-term and dendrite-free Zn anodes. ACS Nano. 2022;16(6):9736-9747.
CrossRef
Google scholar
|
[44] |
LiuH, WangJ-G, HuaW, et al. Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase. Energy Environ Sci. 2022;15(5):1872-1881.
CrossRef
Google scholar
|
/
〈 | 〉 |