Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes

Chen Liu , Yuxin Zhu , Shuanlong Di , Jiarui He , Ping Niu , Antonios Kelarakis , Marta Krysmann , Shulan Wang , Li Li

Electron ›› 2024, Vol. 2 ›› Issue (1) : 29 -11.

PDF
Electron ›› 2024, Vol. 2 ›› Issue (1) : 29 -11. DOI: 10.1002/elt2.29
RESEARCH ARTICLE

Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes

Author information +
History +
PDF

Abstract

Ineffective control of dendrite growth and side reactions on Zn anodessignificantly retards commercialization of aqueous Zn-ion batteries. Unlikeconventional interfacial modification strategies that are primarilyfocused on component optimization or microstructural tuning, herein, wepropose a crystallinity engineering strategy by developing highly crystallinecarbon nitride protective layers for Zn anodes through molten salttreatment. Interestingly, the highly ordered structure along with sufficientfunctional polar groups and pre-intercalated K+ endows the coating withhigh ionic conductivity, strong hydrophilicity, and accelerated ion diffusionkinetics. Theoretical calculations also confirm its enhanced Znadsorption capability compared to commonly reported carbon nitridewith amorphous or semi-crystalline structure and bare Zn. Benefitingfrom the aforementioned features, the as-synthesized protective layerenables a calendar lifespan of symmetric cells for 1100 h and outstandingstability of full cells with capacity retention of 91.5% after 1500 cycles. Thiswork proposes a new conceptual strategy for Zn anode protection.

Keywords

crystalline carbon nitride / crystallinity engineering / long cycling life / uniform Zn deposition / Zn metal anode

Cite this article

Download citation ▾
Chen Liu, Yuxin Zhu, Shuanlong Di, Jiarui He, Ping Niu, Antonios Kelarakis, Marta Krysmann, Shulan Wang, Li Li. Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes. Electron, 2024, 2(1): 29-11 DOI:10.1002/elt2.29

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangN, WangJ-C, GuoY-F, Wang P-F, ZhuY-R, YiT-F. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord Chem Rev. 2023;479:215009.

[2]

LiuH, CaiX, ZhiX, et al. An amorphous anode for proton battery. Nano-Micro Lett. 2022;15(1):24. https://doi.org/10.1007/s40820-022-00987-2

[3]

ZhangN, ChenX, YuM, NiuZ, ChengF, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203-4219.

[4]

VermaV, ChanRM, YangLJ, et al. Chelating ligands as electrolyte solvent for rechargeable zinc-ion batteries. Chem Mater. 2021;33(4):1330-1340.

[5]

HaoJ, YuanL, YeC, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed. 2021;60(13):7366-7375.

[6]

MaL, LiQ, YingY, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33(12):2007406.

[7]

ShiX, WangJ, YangF, Liu X, YuY, LuX. Metallic zinc anode working at 50 and 50 mAh cm−2 with high depth of discharge via electrical double layer reconstruction. Adv Funct Mater. 2023;33(7):2211917.

[8]

FangY, XieX, ZhangB, et al. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Mater. 2022;32(14):2109671.

[9]

YiZ, LiuJ, TanS, et al. An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv Mater. 2022;34(37):2203835.

[10]

HuoX, XuL, XieK, et al. Cation-selective interface for kinetically enhanced dendrite-free Zn anodes. Adv Energy Mater. 2023;13(20):2203066.

[11]

LiuH, YeQ, LeiD, et al. Molecular brush: an ion-redistributor to homogenize fast Zn2+ flux and deposition for calendar-life Zn batteries. Energy Environ Sci. 2023;16(4):1610-1619.

[12]

DiS, NieX, MaG, et al. Zinc anode stabilized by an organicinorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021;43:375-382.

[13]

WangY, LiH, ChenS, et al. An ultralong-life SnS-based anode through phosphate-induced structural regulation for highperformance sodium ion batteries. Sci Bull. 2022;67(20):2085-2095.

[14]

WangY, NiuP, LiJ, WangS, LiL. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Mater. 2021;34:436-460.

[15]

WangJ, LiuZ, QuB, et al. g-C3N4 in situ derived ionicelectronic dual-conducting interlayer with N-rich sites for long lifespan sodium metal anodes. Energy Storage Mater. 2023;59:102793.

[16]

ZhaiB, LiH, GaoG, et al. A crystalline carbon nitride based near-infrared active photocatalyst. Adv Funct Mater. 2022;32(47):2207375.

[17]

DiS, LiH, ZhaiB, et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc Natl Acad Sci USA. 2023;120(33):e2302375120.

[18]

WangY, LinX, WangL, Yang Y, ZhangY, PanA. Tailoring the crystal-chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes. Adv Funct Mater. 2023;33(13):2211088.

[19]

LiH, DiS, NiuP, WangS, WangJ, Li L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ Sci. 2022;15(4):1601-1610.

[20]

LinL, YuZ, WangX. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew Chem Int Ed. 2019;58(19):6164-6175.

[21]

WangP, LiangS, ChenC, et al. Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv Mater. 2022;34(33):2202733.

[22]

LiH, ChengB, XuJ, YuJ, CaoS. Crystalline carbon nitrides for photocatalysis. EES Catal. 2024. https://doi.org/10.1039/D3EY00302G

[23]

MohanG, Venkataraman M, Gomez-VidalJ, CoventryJ. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides. Sol Energy. 2018;176:350-357.

[24]

SunK, WangY, ChangC, et al. Molten-salt synthesis of crystalline C3N4/C nanosheet with high sodium storage capability. ChemEng J. 2021;425:131591.

[25]

LinL, RenW, WangC, Asiri AM, ZhangJ, WangX. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. Appl Catal B Environ. 2018;231:234-241.

[26]

WuS, YuH, ChenS, Quan X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020;10(24):14380-14389.

[27]

LiangY, WuX, LiuX, LiC, LiuS. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl Catal B Environ. 2022;304:120978.

[28]

LinL, OuH, ZhangY, Wang X. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016;6(6):3921-3931.

[29]

ZhangH, LiS, XuL, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv Energy Mater. 2022;12(26):2200665.

[30]

KeJ, WenZ, YangY, et al. Tailoring anion association strength through polycation-anion coordination mechanism in imidazole polymeric ionic liquid-based artificial interphase toward durable Zn metal anodes. Adv Funct Mater. 2023;33(26):2301129.

[31]

WangS, YuanC, ChangN, et al. Act in contravention: a nonplanar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci Bull. 2021;66(9):889-896.

[32]

LiY, WangB, XiangQ-J, Zhang Q, ChenG. Alkali metalmodified crystalline carbon nitride for photocatalytic nitrogen fixation. Dalton Trans. 2022;51(43):16527-16535.

[33]

ZhangQ, LuanJ, HuangX, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat Commun. 2020;11(1):3961.

[34]

QiuM, SunP, WangY, Ma L, ZhiC, MaiW. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew Chem Int Ed. 2022;61(44):e202210979.

[35]

ZhuM, HuJ, LuQ, et al. A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skinmountable microbattery. Adv Mater. 2021;33(8):2007497.

[36]

HongL, WuX, WangL-Y, et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano. 2022;16(4):6906-6915.

[37]

WangL, HuangW, GuoW, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv Funct Mater. 2022;32(1):2108533.

[38]

CaoZ, ZhuX, XuD, et al. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021;36:132-138.

[39]

SoS, AhnYN, KoJ, KimIT, HurJ. Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 2022;52:40-51.

[40]

HongL, WangL-Y, WangY, et al. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci. 2022;9(6):2104866.

[41]

WangT, WangP, PanL, et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv Energy Mater. 2023;13(5):2203523.

[42]

ZhengJ, ZhuG, LiuX, et al. Simultaneous dangling bond and zincophilic site engineering of SiNx protective coatings toward stable zinc anodes. ACS Energy Lett. 2022;7(12):4443-4450.

[43]

YuH, ChenY, WeiW, JiX, ChenL. A functional organic zincchelate formation with nanoscaled granular structure enabling long-term and dendrite-free Zn anodes. ACS Nano. 2022;16(6):9736-9747.

[44]

LiuH, WangJ-G, HuaW, et al. Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase. Energy Environ Sci. 2022;15(5):1872-1881.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/