Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes
Chen Liu , Yuxin Zhu , Shuanlong Di , Jiarui He , Ping Niu , Antonios Kelarakis , Marta Krysmann , Shulan Wang , Li Li
Electron ›› 2024, Vol. 2 ›› Issue (1) : 29 -11.
Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes
Ineffective control of dendrite growth and side reactions on Zn anodessignificantly retards commercialization of aqueous Zn-ion batteries. Unlikeconventional interfacial modification strategies that are primarilyfocused on component optimization or microstructural tuning, herein, wepropose a crystallinity engineering strategy by developing highly crystallinecarbon nitride protective layers for Zn anodes through molten salttreatment. Interestingly, the highly ordered structure along with sufficientfunctional polar groups and pre-intercalated K+ endows the coating withhigh ionic conductivity, strong hydrophilicity, and accelerated ion diffusionkinetics. Theoretical calculations also confirm its enhanced Znadsorption capability compared to commonly reported carbon nitridewith amorphous or semi-crystalline structure and bare Zn. Benefitingfrom the aforementioned features, the as-synthesized protective layerenables a calendar lifespan of symmetric cells for 1100 h and outstandingstability of full cells with capacity retention of 91.5% after 1500 cycles. Thiswork proposes a new conceptual strategy for Zn anode protection.
crystalline carbon nitride / crystallinity engineering / long cycling life / uniform Zn deposition / Zn metal anode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |