Ion migration in 3D metal halide perovskite field effect transistors

Jinghai Li, Yanyan Gong, William W. Yu

PDF
Electron ›› 2024, Vol. 2 ›› Issue (2) : 28. DOI: 10.1002/elt2.28
REVIEW ARTICLE

Ion migration in 3D metal halide perovskite field effect transistors

Author information +
History +

Abstract

3D perovskite materials are advancing rapidly in the field of photovoltaics and light-emitting diodes, but the development in field effect transistors (FETs) is limited due to their intrinsic ion migration. Ion migration in perovskite FETs can screen the electric field of the gate and affect its modulation, as well as influence the charge carriers transport, leading to non-ideal device characteristics and lower device stability. Here, we provide a concise review that explains the mechanism of ion migration, summarizes the strategies for suppressing ion migration, and concludes with a discussion of the future prospects for 3D perovskite FETs.

Keywords

3D metal halide perovskite / field effect transistors / ion migration

Cite this article

Download citation ▾
Jinghai Li, Yanyan Gong, William W. Yu. Ion migration in 3D metal halide perovskite field effect transistors. Electron, 2024, 2(2): 28 https://doi.org/10.1002/elt2.28

References

[1]
Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature. 2018;562:245.
CrossRef Google scholar
[2]
Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science. 2018;361(6408):361.
CrossRef Google scholar
[3]
Kim JY, Lee JW, Jung HS, Shin H, Park NG. High-efficiency perovskite solar cells. Chem Rev. 2020;120(15):7867-7918.
CrossRef Google scholar
[4]
Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon. 2014;8(7):506-514.
CrossRef Google scholar
[5]
Ma D, Lin K, Dong Y, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature. 2021;599(7886):594-598.
CrossRef Google scholar
[6]
Saidaminov MI, Abdelhady AL, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun. 2015;6(1):7586.
CrossRef Google scholar
[7]
Chen Y, Yi HT, Wu X, et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by hall effect and photoconductivity measurements. Nat Commun. 2016;7(1):12253.
CrossRef Google scholar
[8]
Kim H, Hunger J, Canovas E, et al. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nat Commun. 2017;8(1):687.
CrossRef Google scholar
[9]
Herz LM. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2017;2(7):1539-1548.
CrossRef Google scholar
[10]
Zhumekenov AA, Saidaminov MI, Haque MA, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 2016;1:32-37.
CrossRef Google scholar
[11]
Ning W, Wang F, Wu B, et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Adv Mater. 2018;30(20):e1706246.
CrossRef Google scholar
[12]
Xie C, Liu CK, Loi HL, Yan F. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater. 2019;30(20):1903907.
CrossRef Google scholar
[13]
Hwang B, Gu C, Lee D, Lee JS. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Sci Rep. 2017;7(1):43794.
CrossRef Google scholar
[14]
Lin YH, Pattanasattayavong P, Anthopoulos TD. Metal-halide perovskite transistors for printed electronics: challenges and opportunities. Adv Mater. 2017;29(46).
CrossRef Google scholar
[15]
Zeidell AM, Tyznik C, Jennings L, et al. Enhanced charge transport in hybrid perovskite field-effect transistors via microstructure control. Adv Electron Mater. 2018;4(12):1800316.
CrossRef Google scholar
[16]
Zhu H, Liu A, Noh Y-Y. Recent progress on metal halide perovskite field-effect transistors. J Inform Disp. 2021;22(4):257-268.
CrossRef Google scholar
[17]
Paulus F, Tyznik C, Jurchescu OD, Vaynzof Y. Switched-on: progress, challenges, and opportunities in metal halide perovskite transistors. Adv Funct Mater. 2021;31(29):2101029.
CrossRef Google scholar
[18]
Kagan DBMCR, Dimitrakopoulos CD. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science. 1999;286(5441):945-947.
CrossRef Google scholar
[19]
Chin XY, Cortecchia D, Yin J, Bruno A, Soci C. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun. 2015;6(1):7383.
CrossRef Google scholar
[20]
Wang J, Senanayak SP, Liu J, et al. Investigation of electrode electrochemical reactions in CH3NH3PbBr3 perovskite singlecrystal field-effect transistors. Adv Mater. 2019;31(35):e1902618.
CrossRef Google scholar
[21]
She X-J, Chen C, Divitini G, et al. A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nat Electron. 2020;3(11):694-703.
CrossRef Google scholar
[22]
Rivkin B, Fassl P, Sun Q, Taylor AD, Chen Z, Vaynzof Y. Effect of ion migration-induced electrode degradation on the operational stability of perovskite solar cells. ACS Omega. 2018;3(8):10042-10047.
CrossRef Google scholar
[23]
Di Girolamo D, Phung N, Kosasih FU, et al. Ion migrationinduced amorphization and phase segregation as a degradation mechanism in planar perovskite solar cells. Adv Energy Mater. 2020;10(25):2000310.
CrossRef Google scholar
[24]
Yuan Y, Huang J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res. 2016;49(2):286-293.
CrossRef Google scholar
[25]
Wei D, Ma F, Wang R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv Mater. 2018;30(31):e1707583.
CrossRef Google scholar
[26]
Zai H, Ma Y, Chen Q, Zhou H. Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression. J Energy Chem. 2021;63:528-549.
CrossRef Google scholar
[27]
Bi E, Song Z, Li C, Wu Z, Yan Y. Mitigating ion migration in perovskite solar cells. Trends Chem. 2021;3(7):575-588.
CrossRef Google scholar
[28]
Li N, Jia Y, Guo Y, Zhao N. Ion migration in perovskite lightemitting diodes: mechanism, characterizations, and material and device engineering. Adv Mater. 2022;34(19):e2108102.
CrossRef Google scholar
[29]
Zhu W, Wang S, Zhang X, Wang A, Wu C, Hao F. Ion migration in organic-inorganic hybrid perovskite solar cells: current understanding and perspectives. Small. 2022;18(15):e2105783.
CrossRef Google scholar
[30]
Tress W. Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities—from hysteresis to memristivity. J Phys Chem Lett. 2017;8(13):3106-3114.
CrossRef Google scholar
[31]
Liu A, Zhu H, Bai S, et al. High-performance metal halide perovskite transistors. Nat Electron. 2023;6(8):559-571.
CrossRef Google scholar
[32]
Roh T, Zhu H, Yang W, Liu A, Noh YY. Ion migration induced unusual charge transport in tin halide perovskites. ACS Energy Lett. 2023;8(2):957-962.
CrossRef Google scholar
[33]
Ighodalo KO, Chen W, Liang Z, et al. Negligible ion migration in tin-based and tin-doped perovskites. Angew Chem Int Edit. 2023;135(5):e202213932.
CrossRef Google scholar
[34]
Li C, Tscheuschner S, Paulus F, et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv Mater. 2016;28(12):2446-2454.
CrossRef Google scholar
[35]
McGovern L, Koschany I, Grimaldi G, Muscarella LA, Ehrler B. Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells. J Phys Chem Lett. 2021;12(9):2423-2428.
CrossRef Google scholar
[36]
Tan S, Yavuz I, De Marco N, et al. Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv Mater. 2020;32(11):e1906995.
CrossRef Google scholar
[37]
Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys Chem Chem Phys. 2016;18(44):30484-30490.
CrossRef Google scholar
[38]
Haruyama J, Sodeyama K, Han L, Tateyama Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J Am Chem Soc. 2015;137(32):10048-10051.
CrossRef Google scholar
[39]
Azpiroz JM, Mosconi E, Bisquert J, De Angelis F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci. 2015;8(7):2118-2127.
CrossRef Google scholar
[40]
Yin W-J, Shi T, Yan Y. Unusual defect physics in CH3NH3Pbi3 perovskite solar cell absorber. Appl Phys Lett. 2014;104:6.
CrossRef Google scholar
[41]
Xing G, Mathews N, Lim SS, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014;13(5):476-480.
CrossRef Google scholar
[42]
Senanayak SP, Yang B, Thomas TH, et al. Understanding charge transport in lead iodide perovskite thin-film fieldeffect transistors. Sci Adv. 2017;3:e1601935.
CrossRef Google scholar
[43]
Haque F, Bukke RN, Mativenga M. Reduction of hysteresis in hybrid perovskite transistors by solvent-controlled growth. Materials. 2021:14.
CrossRef Google scholar
[44]
Canicoba ND, Zagni N, Liu F, et al. Halide perovskite high-kfield effect transistors with dynamically reconfigurable ambipolarity. ACS Mater Lett. 2019;1:633. https://doi.org/10.1021/acsmaterialslett.9b00357
[45]
Haque F, Hoang NTT, Ji J, Mativenga M. Effect of precursor composition on ion migration in hybrid perovskite CH3NH3Pbi3. IEEE Electron Device Lett. 2019;40:1756.
CrossRef Google scholar
[46]
Mativenga M, Ji J, Hoang NTt, Haque F. Ambient air stability of hybrid perovskite thin-film transistors by ambient air processing. Adv Mater Interfac. 2020;7:1901777.
CrossRef Google scholar
[47]
Huo C, Liu X, Song X, Wang Z, Zeng H. Field-effect transistors based on van-der-Waals-grown and dry-transferred allinorganic perovskite ultrathin platelets. J Phys Chem Lett. 2017;8:4785.
CrossRef Google scholar
[48]
Senanayak SP, Kamboj VS, Carey R, et al. A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Sci Adv. 2020;6:eaaz4948.
CrossRef Google scholar
[49]
Kim HP, Vasilopoulou M, Ullah H, et al. A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale. 2020;12:7641.
CrossRef Google scholar
[50]
Zhang Y, Ummadisingu A, Shivanna R, et al. Direct observation of contact reaction induced ion migration and its effect on non-ideal charge transport in lead triiodide perovskite field-effect transistors. Small. 2023;19(41):2302494.
CrossRef Google scholar
[51]
Senanayak SP, Dey K, Shivanna R, et al. Charge transport in mixed metal halide perovskite semiconductors. Nat Mater. 2023;22:216.
CrossRef Google scholar
[52]
Liu A, Zhu H, Kim S, et al. Antimony fluoride (SbF3): A potent hole suppressor for tin(II)-halide perovskite devices. InfoMat. 2022;5:e12386.
CrossRef Google scholar
[53]
Zhu H, Liu A, Shim KI, et al. High-performance hysteresis-free perovskite transistors through anion engineering. Nat Commun. 2022;13:1741. https://doi.org/10.1038/s41467-022-29434-x
[54]
Shao S, Talsma W, Pitaro M, et al. Field-effect transistors based on formamidinium tin triiodide perovskite. Adv Funct Mater. 2021;31:2008478.
CrossRef Google scholar
[55]
Yang W, Park G, Liu A, et al. Fluorinated organic a-cation enabling high-performance hysteresis-free 2D/3D hybrid tin perovskite transistors. Adv Funct Mater. 2023;33:2303309.
CrossRef Google scholar
[56]
Labram JG, Fabini DH, Perry EE, et al. Temperature-dependent polarization in field-effect transport and photovoltaic measurements of methylammonium lead iodide. J Phys Chem Lett. 2015;6:3565.
CrossRef Google scholar
[57]
Cho N, Li F, Turedi B, et al. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films. Nat Commun. 2016;7:13407. https://doi.org/10.1038/ncomms13407
[58]
Wang G, Cheng H, Li Y, et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci Adv. 2015;1:e1500613.
CrossRef Google scholar
[59]
Aleshin AN, Shcherbakov IP, Trapeznikova IN, Petrov VN. Field-effect transistors with high mobility and small hysteresis of transfer characteristics based on CH3NH3PbBr3 films. Phys Solid State. 2017;59:2486.
CrossRef Google scholar
[60]
Shlenskaya NN, Belich NA, Gräzel M, Goodilin EA, Tarasov AB. Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J Mater Chem A. 2018;6:1780.
CrossRef Google scholar
[61]
Li HZ, Wang G, Hu J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science. 2019;363:265.
CrossRef Google scholar
[62]
Luo ZD, Xia X, Yang MM, Wilson NR, Gruverman A, Alexe M. Artificial optoelectronic synapses based on ferroelectric fieldeffect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano. 2020;14:746.
CrossRef Google scholar
[63]
Ji J, Haque F, Hoang NTT, Mativenga M. Ambipolar transport in methylammonium lead iodide thin film transistors. Crystals. 2019;9:539.
CrossRef Google scholar
[64]
Farjana Haque SL, Lee S, Park Y, Mativenga M. Highly sensitive and ambient air-processed hybrid perovskite TFT temperature sensor. IEEE Electron Device Lett. 2020;41:1086.
CrossRef Google scholar
[65]
Yu W, Li F, Yu L, et al. Single crystal hybrid perovskite fieldeffect transistors. Nat Commun. 2018;9:5354. https://doi.org/10.1038/s41467-018-07706-9
[66]
Zhu H, Liu A, Shim KI, Hong J, Han JW, Noh YY. Highperformance and reliable lead-free layered-perovskite transistors. Adv Mater. 2020;32:e2002717. https://doi.org/10.1002/adfm.201906335
[67]
Liu A, Zhu H, Reo Y, et al. Modulation of vacancy-ordered double perovskite CS2Sni6 for air-stable thin-film transistors. Cell Rep Phys Sci. 2022;3:100812.
CrossRef Google scholar
[68]
Liu A, Zhu H, Bai S, et al. High-performance inorganic metal halide perovskite transistors. Nat Electron. 2022;5:78.
CrossRef Google scholar
[69]
Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ. Stability of metal halide perovskite solar cells. Adv Energy Mater. 2015;5:1500963.
CrossRef Google scholar
[70]
Dong H, Zhang C, Liu X, Yao J, Zhao YS. Materials chemistry and engineering in metal halide perovskite lasers. Chem Soc Rev. 2020;49:951.
CrossRef Google scholar
[71]
Kim YH, Cho H, Lee TW. Metal halide perovskite light emitters. Proc Natl Acad Sci USA. 2016;113:11694.
CrossRef Google scholar
[72]
Chen C, Song Z, Xiao C, et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 2020;5:2560.
CrossRef Google scholar
[73]
Cho J, DuBose JT, Le ANT, Kamat PV. Suppressed halide ion migration in 2D lead halide perovskites. ACS Mater Lett. 2020;2:565.
CrossRef Google scholar
[74]
Grancini G, Roldan-Carmona C, Zimmermann I, et al. Oneyear stable perovskite solar cells by 2D/3D interface engineering. Nat Commun. 2017;8:15684.
CrossRef Google scholar
[75]
Zhu H, Yang W, Reo Y, et al. Tin perovskite transistors and complementary circuits based on A-site cation engineering. Nat Electron. 2023;6:650-657.
CrossRef Google scholar
[76]
Xin Y, Zhao H, Zhang J. Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy. ACS Appl Mater Interfaces. 2018;10:4971.
CrossRef Google scholar
[77]
Zhao B, Bai S, Kim V, et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat Photonics. 2018;12:783.
CrossRef Google scholar
[78]
Wang S, Zhang Z, Tang Z, et al. Polymer strategies for highefficiency and stable perovskite solar cells. Nano Energy. 2021;82:105712.
CrossRef Google scholar
[79]
Fairfield DJ, Sai H, Narayanan A, et al. Structure and chemical stability in perovskite-polymer hybrid photovoltaic materials. J Mater Chem A. 2019;7:1687.
CrossRef Google scholar
[80]
Li X, Zhang W, Wang YC, Zhang W, Wang HQ, Fang J. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat Commun. 2018;9:3806.
CrossRef Google scholar
[81]
Han TH, Lee JW, Choi C, et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun. 2019;10:520.
CrossRef Google scholar
[82]
Ma Y, Cheng Y, Xu X, et al. Suppressing ion migration across perovskite grain boundaries by polymer additives. Adv Funct Mater. 2020;31:2006802.
CrossRef Google scholar
[83]
Xia J, Qiu X, Liu Y, et al. Ferroelectric wide-bandgap metal halide perovskite field-effect transistors: Toward transparent electronics. Adv Sci. 2023;10:2300133.
CrossRef Google scholar
[84]
Bush KA, Bailie CD, Chen Y, et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems Enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv Mater. 2016;28:3937.
CrossRef Google scholar
[85]
Sun T, Chen T, Chen J, et al. High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale. 2023;15:7803.
CrossRef Google scholar
[86]
Li X, Fu S, Zhang W, Ke S, Song W, Fang J. Chemical anticorrosion strategy for stable inverted perovskite solar cells. Sci Adv. 2020;6:eabd1580.
CrossRef Google scholar
[87]
Wang J, Chen X, Jiang F, et al. Electrochemical corrosion of Ag electrode in the silver grid electrode-based flexible perovskite solar cells and the suppression method. Sol RRL. 2018;2:1800118.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/