Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium‐ion batteries

Kai Chen , Wenqin Cai , Zhihua Hu , Qingke Huang , Ao Wang , Zeng Zeng , Jiahao Song , Yan Sun , Qingquan Kong , Wei Feng , Ting Chen , Zhenguo Wu , Yang Song , Xiaodong Guo

Electron ›› 2024, Vol. 2 ›› Issue (2) : 27

PDF
Electron ›› 2024, Vol. 2 ›› Issue (2) : 27 DOI: 10.1002/elt2.27
REVIEW ARTICLE

Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium‐ion batteries

Author information +
History +
PDF

Abstract

Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent electrochemical properties and low price. However, microcracks, lithium–nickel hybridization, and irreversible phase transitions during cycling limit their commercial applications. These issues should be resolved by modifications. In recent years, it has been favored by researchers to solve a large number of problems by combining multiple modification strategies. Therefore, this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics. The summary of multiple modifications of nickel-rich materials will play a guiding role in future development.

Keywords

coating modification / dual modification / element doping / Ni-rich cathodes

Cite this article

Download citation ▾
Kai Chen, Wenqin Cai, Zhihua Hu, Qingke Huang, Ao Wang, Zeng Zeng, Jiahao Song, Yan Sun, Qingquan Kong, Wei Feng, Ting Chen, Zhenguo Wu, Yang Song, Xiaodong Guo. Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium‐ion batteries. Electron, 2024, 2(2): 27 DOI:10.1002/elt2.27

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Indra O, Javlon J, Roman V. Are renewable energy resources more evenly distributed than fossil fuels? Renew Energy. 2022;200:379-386.

[2]

Lin J, Zhang XD, Fan ES, Chen R, Wu F, Li L. Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ Sci. 2023;16(3):745-791.

[3]

Wang Z, Li X. Demand subsidy versus production regulation: development of new energy vehicles in a competitive environment. Mathematics. 2021;9(11):1280.

[4]

Manthiram A, Goodenough JB. Layered lithium cobalt oxide cathodes. Nat Energy. 2021;6(3):323.

[5]

Wang X, Wang X, Lu Y. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind Eng Chem Res. 2019;58(24):10119-10139.

[6]

Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed Engl. 2012;51(24):5798-5800.

[7]

Zhang J-C, Liu Z-D, Zeng C-H, et al. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery. Rare Met. 2022;41(12):3946-3956.

[8]

Luo Y-H, Wei H-X, Tang L-B, et al. Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Mater. 2022;50:274-307.

[9]

Kong F, Liang C, Wang L, et al. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2 based cathode materials. Adv Energy Mater. 2018;9(2):1802586.

[10]

Yoon CS, Jun D-W, Myung S-T, Sun Y-K. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2017;2(5):1150-1155.

[11]

Chen Y, Song S, Zhang X, Liu Y. The challenges, solutions and development of high energy Ni-rich NCM/NCA LiB cathode materials. J Phys Conf. 2019;1347(1):012012.

[12]

Kawashima K, Ohnishi T, Takada K. High-rate capability of LiCoO2 cathodes. ACS Appl Energy Mater. 2020;3(12):11803-11810.

[13]

Li X, Wang Q, Guo H, Artrith N, Urban A. Understanding the onset of surface degradation in LiNiO2 cathodes. ACS Appl Energy Mater. 2022;1(46):1971.

[14]

Nie Y, Xiao W, Miao C, et al. Improving the structural stability of Ni-rich LiNi0.81Co0.15Al0.04O2 cathode materials with optimal content of trivalent Al ions doping for lithium ions batteries. Ceram Int. 2020;47(7):9717-9726.

[15]

Manthiram A, Song B, Li W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2016;6:125-139.

[16]

Su Y, Zhang Q, Chen L, et al. Stress accumulation in Ni-rich layered oxide cathodes: origin, impact, and resolution. J Energy Chem. 2021;65:236-253.

[17]

Noh H-J, Youn S, Yoon CS, Sun Y-K. Comparison of the structural and electrochemical properties of layered Li[Nix-CoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources. 2013;233:121-130.

[18]

Cui S, Wei Y, Liu T, et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Adv Energy Mater. 2015;6(4):1501309. https://doi.org/10.1002/aenm.201501309

[19]

Deng ZQ, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phys Chem C. 2011;115(14):7097-7103.

[20]

Jing Q, Zhang J, Yang C, Chen Y, Wang C. A novel and practical hydrothermal method for synthesizing LiNi1/3CO1/3MN1/3O2 cathode material. Ceram Int. 2020;46(12):20020-20026.

[21]

Li Y, Xu C, Dang M, et al. Improved electrochemical performances of LiNi0.5Co0.2Mn0.3O2 modified by Graphene/V2O5 co-coating. Ceram Int. 2021;47(15):21759-21768.

[22]

Li S, Fu X, Zhou J, et al. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J Mater Chem A. 2016;4(16):5823-5827.

[23]

Feng Z, Rajagopalan R, Zhang S, et al. A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode. Adv Sci. 2020;8(2):2001809.

[24]

Zhang X, Hu GR, Du K, et al. Enhanced electrochemical performance of Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode material via synergistic modification of cerium doping and ceria coating. Ionics. 2022;29:549-561.

[25]

Makimura Y, Zheng S, Ikuhara Y, Ukyoa Y. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. J Electrochem Soc. 2012;159(7):A1070-A1073.

[26]

Lee K-S, Myung S-T, Prakash J, Yashiro H, Sun Y-K. Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries. Electrochimica Acta. 2008;53(7):3065-3074.

[27]

Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K. Nickel-rich and lithium-rich layered oxide cathodes progress. Adv Energy Mater. 2015;6(1):1501010.

[28]

Kim H, Kim MG, Jeong HY, Nam H, Cho J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 2015;15(3):2111-2119.

[29]

Ye Z, Qiu L, Yang W, et al. Nickel-rich layered cathode materials for lithium-ion batteries. Chem Eur J. 2020;27(13):4249-4269.

[30]

Bianchini F, Fjellvå H, Vajeeston P. A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure. Mater Lett. 2018;219:186-189.

[31]

Lee K-K, Kim K-B. Electrochemical and structural characterization of LiNi1–yCoyO2 (0≤y≤0.2) positive electrodes during initial cycling. J Electrochem Soc. 2000;147(5):1709-1717.

[32]

Kim U-H, Park G-T, Son B-K, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat Energy. 2020;5:860-869.

[33]

Li X, Gao A, Tang Z, et al. Robust surface reconstruction induced by subsurface Ni/Li antisites in Ni-rich cathodes. Adv Funct Mater. 2021;31(16):2010291.

[34]

Wei H-X, Tang L, Huang Y, et al. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater Today. 2021;51:365-392.

[35]

Zeng Z, Fuqiren G, Yang S, et al. Insight into the role of Co and Mn elements in Ni-rich LiNi0.9CoxMn0.08–xAl0.02O2 cathode materials. Ind Eng Chem Res. 2023;62(43):17776-17786.

[36]

Yue P, Wang Z, Guo H, Wu F, He Z, Li X. Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries. J Solid State Electrochem. 2012;16(12):3849-3854.

[37]

Sakka S. Birth of the sol–gel method: early history. J Sol Gel Sci Technol. 2021;102(3):478-481.

[38]

Yue P, Wang Z, Peng W, et al. Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol. 2011;214(3):279-282.

[39]

Liang L, Du K, Peng Z, et al. Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochimica Acta. 2014;130:82-89.

[40]

Ren D, Shen Y, Yang Y, et al. Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(41):35811-35819.

[41]

Yin S, Deng W, Chen J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy. 2021;83:105854.

[42]

Li J, Zhong W, Deng Q, Zhang Q, Yang C. Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries. Int J Extrem Manuf. 2022;4(4):042004.

[43]

Lei T, Li Y, Su Q, et al. High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Al concentration gradient modification. Ceram Int. 2018;44(8):8809-8817.

[44]

Li J, Manthiram A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv Energy Mater. 2019;9(45):1902731.

[45]

Wu EJ, Tepesch PD, Ceder G. Size and charge effects on the structural stability of LiMO2 (M =transition metal) compounds. Phil Mag B. 2009;77(4):1039-1047.

[46]

Zhang B, Li L, Zheng J. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. J Alloys Compd. 2012;520:190-194.

[47]

Gao A, Sun Y, Zhang Q, Zheng J, Lu X. Evolution of Ni/Li antisites under the phase transition of a layered LiNi1/3CO1/3MN1/3O2 cathode. J Mater Chem A. 2020;8(13):6337-6348.

[48]

Shannon RDA. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Crystallography. 1976;32(5):751-767.

[49]

Chen S, Zhang X, Xia M, et al. Issues and challenges of layered lithium nickel cobalt manganese oxides for lithiumion batteries. J Electroanal Chem. 2021;895:115412.

[50]

Jung S-K, Gwon H, Hong J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2013;4(1):1300787.

[51]

Hou P, Yin J, Ding M, Huang J, Xu X. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes. Small. 2017;13(45):1701802.

[52]

Ma X, Kang K, Ceder G, Meng YS. Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2. J Power Sources. 2007;177(1):550-555.

[53]

Kim Y, Kim D, Kang S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem Mater. 2011;23(24):5388-5397.

[54]

Duan Y, Yang L, Zhang M-J, et al. Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides. J Mater Chem A. 2018;7(2):513-519.

[55]

Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Accounts Chem Res. 2019;52(8):2201-2209.

[56]

Liu H, Wolf M, Karki K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 2017;17(6):3452-3457.

[57]

Nam GW, Park N-Y, Park K-J, et al. Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent. ACS Energy Lett. 2019;4(12):2995-3001.

[58]

Zhang W, Du F-Y, Dai Y, Zheng J-C. Strain engineering of Li+ ion migration in olivine phosphate cathode materials LiMPO4 (M =Mn, Fe, Co) and (LiFePO4)n(LiMnPO4)m superlattices. Phys Chem Chem Phys. 2023;28(8):6142-6152.

[59]

Zhang MJ, Hu X, Li M, et al. Cooling induced surface reconstruction during synthesis of high-Ni layered oxides. Adv Energy Mater. 2019;9(43):1901915. https://doi.org/10.1002/aenm.201901915

[60]

Liu L, Li X-F, Yan Q, et al. Uniform and perfectly linear current–voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires. Phys Chem Chem Phys. 2016;19(1):44-48.

[61]

Zhang J, Zhou D, Yang W, et al. Probing the nature of Li+/Ni2+ disorder on the structure and electrochemical performance in Ni-based layered oxide cathodes. J Electrochem Soc. 2019;166(16):A4097-A4105.

[62]

Wang C, Tan L, Yi H, et al. Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes. Nano Res. 2022;15(10):9038-9046.

[63]

Mukhopadhyay A, Sheldon BW. Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci. 2014;63:58-116.

[64]

Zhou Y-N, Ma J, Hu E, et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat Commun. 2014;18(5):5381.

[65]

Yan P, Zheng J, Gu M, Xiao J, Zhang J-G, Wang C-M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun. 2017;8(1):14101.

[66]

Lin Q, Guan W, Zhou J, et al. Ni–Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode. Nano Energy. 2020;76:105021.

[67]

Yoon W-S, Chung KY, McBreen J, Yang X-Q. A comparative study on structural changes of LiCO1/3Ni1/3MN1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem Commun. 2006;8(8):1388-2481.

[68]

Heiskanen SK, Kim J, Lucht BL. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule. 2019;3(10):2322-2333.

[69]

Najma Y, Robert M, Olivier G, Payam K. Delithiation-induced oxygen vacancy formation increases microcracking of LiCoO2 cathodes. J Power Sources. 2022;533(6):231316.

[70]

Liu X, Zhan X, Hood ZD, Chi M. Probing the origin of microcracks in layered oxide cathodes via electron microscopy. Microsc Microanal. 2019;25(S2):2058-2059.

[71]

Park K-J, Hwang J-Y, Ryu H-H, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: are microcracks really critical? ACS Energy Lett. 2019;4(6):1394-1400.

[72]

Lai J, Zhang J, Li Z, et al. Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. Chem Commun. 2020;56(36):4886-4889.

[73]

Ryu H-H, Park K-J, Yoon CS, Sun Y-K. Capacity fading of Nirich Li[NixCoyMN1–xy]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155-1163. https://doi.org/10.1021/acs.chemmater.7b05269

[74]

Kondrakov AO, Schmidt A, Xu J, et al. Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries. J Phys Chem C. 2017;121(6):3286-3294.

[75]

Qiu L, Zhang M, Song Y, et al. Recent advance in structure regulation of high-capacity Ni-rich layered oxide cathodes. EcoMat. 2021;3(5):e12141.

[76]

Feng Y, Li J, Yang X. Intragranular and intergranular crack propagation in nanocrystalline Ni under single-cycle mode I loading. Metals Mater Int. 2021;28(7):1590-1598.

[77]

Qiu L, Zhang M, Song Y, et al. Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of [003] crystallographic textures. Carbon Energy. 2022;5(7):e298.

[78]

Bi Y, Tao J, Wu Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science. 2020;370(6522):1313-1317.

[79]

Qian G, Zhang Y, Li L, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Storage Mater. 2020;27:140-149.

[80]

Ahmed S, Pokle A, Schweidler S, et al. The role of intragranular nanopores in capacity fade of nickel-rich layered Li (Ni1-x-yCoxMny)O2 cathode materials. ACS Nano. 2019;13(9):10694-10704.

[81]

Yan P, Zheng J, Chen T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun. 2018;9(1):2437.

[82]

Lee E, Lee W, Kim J, et al. The effect of high-temperature storage on the reaction heterogeneity of Ni-rich layered cathode materials. Energy Storage Mater. 2022;46:259-268.

[83]

Zheng S, Hong C, Guan X, et al. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. J Power Sources. 2018;412:336-343.

[84]

Wu F, Liu N, Chen L, et al. The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J Energy Chem. 2021;62:351-358.

[85]

Li W, Siachos I, Lee J, et al. Direct observation of breathing phenomenon and phase transformation in Ni-rich cathode materials by in situ TEM. Microsc Microanal. 2021;27(S1):1254-1255.

[86]

Zheng SJ, Huang R, Makimura Y, et al. Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle. J Electrochem Soc. 2019;158(4):A357.

[87]

Zhao J, Zhang W, Huq A, et al. In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv Energy Mater. 2016;7(3):1601266.

[88]

Ceder G, Van der Ven A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochimica Acta. 1999;45(1-2):131-150.

[89]

Zou L, Liu Z, Zhao W, et al. Solid–liquid interfacial reaction trigged propagation of phase transition from surface into bulk lattice of Ni-rich layered cathode. Chem Mater. 2018;30(20):7016-7026.

[90]

Li S, Liu Z, Yang L, et al. Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material. Nano Energy. 2022;98:107335.

[91]

Liang C, Jiang L, Wei Z, Zhang W, Wang Q, Sun J. Insight into the structural evolution and thermal behavior of LiNi0.8Co0.1Mn0.1O2 cathode under deep charge. J Energy Chem. 2021;65:424-432.

[92]

Sun Y, Ren D, Liu G, et al. Correlation between thermal stabilities of nickel-rich cathode materials and battery thermal runaway. Int J Energy Res. 2021;45(15):20867-20877.

[93]

Zhao H, Bai Y, Li Y, et al. Insight into thermal analysis kinetics of surface protected LiNi0.8Co0.15Al0.05O2 cathode for safe lithium-ion batteries. Energy Storage Mater. 2022;49:409-420.

[94]

Yuan K, Li N, Ning R, et al. Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy. Nano Energy. 2020;78:105239.

[95]

Wu L, Nam K-W, Wang X, et al. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater. 2011;23(17):3953-3960.

[96]

Mukherjee P, Faenza NV, Pereira N, et al. Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions. Chem Mater. 2018;30(23):8431-8445.

[97]

Nam K-W, Bak S-M, Hu E, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv Funct Mater. 2012;23(8):1047-1063.

[98]

Wang X, Bai Y, Wang X, Wu C. High-voltage layered ternary oxide cathode materials: failure mechanisms and modification methods. Chin J Chem. 2020;38(12):1847-1869.

[99]

Wu C, Li R, Chen T, et al. Understanding of the irreversible phase transition and Zr-doped modification strategy for a nickel-rich cathode under a high voltage. ACS Sustain Chem Eng. 2022;10(11):3651-3660.

[100]

Yang W, Bai C-J, Xiang W, et al. Dual-modified compact layer and superficial Ti doping for reinforced structural integrity and thermal stability of Ni-rich cathodes. ACS Appl Mater Interfaces. 2021;13(46):54997-55006.

[101]

Dang R, Qu Y, Ma Z, Yu L, Duan L, W. The effect of elemental doping on nickel-rich NCM cathode materials of lithium ion batteries. J Phys Chem C. 2021;126(1):151-159.

[102]

Liu X, Wang S, Wang L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J Power Sources. 2019;438:227017.

[103]

Schipper F, Dixit M, Kovacheva D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A. 2016;4(41):16073-16084.

[104]

Cao Y, Wang L, Yang X, et al. Enabling high-rate discharge capability and stable cycling for Ni-rich layered cathodes via multi-functional modification strategy. Electrochimica Acta. 2022;440:141763.

[105]

Yang W, Xiang W, Chen Y-X, et al. Interfacial regulation of Nirich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces. 2020;12(9):10240-10251.

[106]

Lv H, Li C, Zhao Z, Wu B, Mu D. A review: modification strategies of nickel-rich layer structure cathode (Ni≥0.8) materials for lithium ion power batteries. J Energy Chem. 2021;60:435-450.

[107]

Li ZK, Yu XF, Lv YP, et al. Investigation on the structure and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 modified with Sn. Electrochimica Acta. 2021;400:139468.

[108]

Ryu H-H, Lim H-W, Lee SG, Sun Y-K. Optimization of molybdenum-doped Ni-rich layered cathodes for long-term cycling. Energy Storage Mater. 2023;59(2):102771.

[109]

Li J, Zhang M, Zhang D, Yan Y, Li Z. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J. 2020;402:126195.

[110]

Wang D, Li X, Wang Z, et al. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochimica Acta. 2015;188:48-56.

[111]

Susai FA, Kovacheva D, Chakraborty A, et al. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies. ACS Appl Energy Mater. 2019;2(6):4521-4534.

[112]

Li C, Kan WH, Xie H, et al. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability. Adv Sci. 2018;6(4):1801406.

[113]

Qiu Q-Q, Yuan S-S, Bao J, et al. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution. J Energy Chem. 2021;61(0):571-581.

[114]

Azhari L, Sousa B, Ahmed R, et al. Stability enhancement and microstructural modification of Ni-rich cathodes via halide doping. ACS Appl Mater Interfaces. 2022;14(41):46523-46536.

[115]

Yao C, Zhou C, Cheng B, Li M. A first-principles study of F and Cl doping in LiNi0.83Co0.08Mn0.08O2 cathode materials. Crystals. 2022;12(9):1297.

[116]

Yang Y, Wang Y, Xue Z, et al. Meticulous guard: the role of Al/F doping in improving the electrochemical performance of high-voltage spinel cathode. J Materiomics. 2020;7(3):585-592.

[117]

Kong F, Liang C, Longo RC, et al. Conflicting roles of anion doping on the electrochemical performance of Li-ion battery cathode materials. Chem Mater. 2016;28(19):6942-6952.

[118]

Zeng X, Zhan C, Lu J, Amine K. Stabilization of a highcapacity and high-power nickel-based cathode for Li-ion batteries. Chem. 2018;4(4):690-704.

[119]

Hu Y, Guo F, Zhu C, et al. Effective and low-cost in situ surface engineering strategy to enhance the interface stability of an ultrahigh Ni-rich NCMA cathode. ACS Appl Mater Interfaces. 2022;14(46):51835-51845.

[120]

Gao H, Cai J, Xu G-L, et al. Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode. Chem Mater. 2019;31(8):2723-2730.

[121]

Li J, Wang J, Lu X, et al. Enhancing high-potential stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode with PrF3 coating. Ceram Int. 2021;47(5):6341-6351.

[122]

Dou L, Tang A, Lin W, et al. Enhancing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes through amorphous coatings. Electrochimica Acta. 2022;12(28):31392-31400.

[123]

Li W, Zhang J, Zhou Y, et al. Regulating the grain orientation and surface structure of primary particles through Tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials. ACS Appl Mater Interfaces. 2020;12(42):47513-47525.

[124]

Gan Z, Lu Y, Gong Y, et al. Enhanced electrochemical behavior of LiNi0.8Co0.1Mn0.1O2 cathode materials by nickel boride coating for LIB. Ceram Int. 2022;48(17):25219-25227.

[125]

Zhou H, Zhou F, Shi S, Yang W, Song Z. Influence of working temperature on the electrochemical characteristics of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for Li-ion batteries. J Alloys Compd. 2020;847(20):156412.

[126]

Liu Y, Tanabe T, Irii Y, et al. Optimization of synthesis condition of water-resistant and thin titanium oxide layer-coated Ni-rich layered cathode materials and their cathode performance. J Appl Electrochem. 2018;2019(49):99-110.

[127]

Razmjoo Khollari MA, Paknahad P, Ghorbanzadeh M. Improvement of the electrochemical performance of a nickel rich LiNi0.5Co0.2Mn0.3O2 cathode material by reduced graphene oxide/SiO2 nanoparticle double-layer coating. New J Chem. 2019;43(3):2766-2775.

[128]

Su Y, Chen G, Chen L, et al. Roles of fast-ion conductor LiTaO3 modifying Ni-rich cathode material for Li-ion batteries. ChemSusChem. 2021;14(8):1955-1961.

[129]

Zhu Z, Duan J, Zhang J, et al. Optimizing the interface engineering and structural stability of nickel-rich layered oxide cathode by dual-function modification. Chem Eng J. 2021;430(2):132908.

[130]

Zhang J, Lan Z, Xi R, Li Y, Zhang C. The cycle stability and rate performance of LiNi0.8Mn0.1Co0.1O2 enhanced by Mg doping and LiFePO4 coating. Chemelectrochem. 2022;9(6):e202101654.

[131]

Tang L-B, Liu Y, Wei H-X, et al. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. J Energy Chem. 2020;55:114-123. https://doi.org/10.1016/j.jechem.2020.06.055

[132]

Liao C, Li F, Liu J. Challenges and modification strategies of Ni-rich cathode materials operating at high-voltage. Nanomaterials. 2022;12(11):1888.

[133]

Ge M, Wi S, Liu X, et al. Kinetic limitations in single-crystal high-nickel cathodes. Angew Chem Int Ed. 2020;60(32):17350-17355.

[134]

Jo C-H, Voronina N, Myung S-T. Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: strategies, status, and challenges to improve energy density and cyclability. Energy Storage Mater. 2022;51:568-587.

[135]

Deng X, Zhang R, Zhou K, et al. A comparative investigation of single crystal and polycrystalline Ni-rich NCMs as cathodes for lithium-ion batteries. Energy Environ Mater. 2021;6(3):e12331.

[136]

Liu Z, Tang R, Xiao F, Zeng L, Wang Y, Liu J. Excellent cycling performance of high-nickel single-crystal cathode material by a well-tailored binary molten-salt method. Appl Surf Sci. 2023;640:158437.

[137]

Nam G, Hwang J, Kang DH, et al. Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries. J Energy Chem. 2023;79(4):562-568.

[138]

Hu Z, Huang Q, Cai W, et al. Research progress on enhancing the performance of high nickel single crystal cathode materials for lithium-ion batteries. Ind Eng Chem Res. 2023;62(6):2410-2427.

[139]

Liu Z-D, Wang C-Y, Zhang J-C, et al. Co-free/Co-poor high-Ni cathode for high energy, stable and low-cost lithium-ion batteries. Rare Met. 2023;42(7):2214-2225.

[140]

Qiu L, Zhang M, Song Y, et al. Origin and regulation of interface fusion during synthesis of single-crystal Ni-rich cathodes. Angew Chem Int Ed. 2023;62(12):e202300209.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

367

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/