Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium‐ion batteries
Kai Chen, Wenqin Cai, Zhihua Hu, Qingke Huang, Ao Wang, Zeng Zeng, Jiahao Song, Yan Sun, Qingquan Kong, Wei Feng, Ting Chen, Zhenguo Wu, Yang Song, Xiaodong Guo
Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium‐ion batteries
Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent electrochemical properties and low price. However, microcracks, lithium–nickel hybridization, and irreversible phase transitions during cycling limit their commercial applications. These issues should be resolved by modifications. In recent years, it has been favored by researchers to solve a large number of problems by combining multiple modification strategies. Therefore, this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics. The summary of multiple modifications of nickel-rich materials will play a guiding role in future development.
coating modification / dual modification / element doping / Ni-rich cathodes
[1] |
Indra O, Javlon J, Roman V. Are renewable energy resources more evenly distributed than fossil fuels? Renew Energy. 2022;200:379-386.
CrossRef
Google scholar
|
[2] |
Lin J, Zhang XD, Fan ES, Chen R, Wu F, Li L. Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ Sci. 2023;16(3):745-791.
CrossRef
Google scholar
|
[3] |
Wang Z, Li X. Demand subsidy versus production regulation: development of new energy vehicles in a competitive environment. Mathematics. 2021;9(11):1280.
CrossRef
Google scholar
|
[4] |
Manthiram A, Goodenough JB. Layered lithium cobalt oxide cathodes. Nat Energy. 2021;6(3):323.
CrossRef
Google scholar
|
[5] |
Wang X, Wang X, Lu Y. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind Eng Chem Res. 2019;58(24):10119-10139.
CrossRef
Google scholar
|
[6] |
Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed Engl. 2012;51(24):5798-5800.
CrossRef
Google scholar
|
[7] |
Zhang J-C, Liu Z-D, Zeng C-H, et al. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery. Rare Met. 2022;41(12):3946-3956.
CrossRef
Google scholar
|
[8] |
Luo Y-H, Wei H-X, Tang L-B, et al. Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Mater. 2022;50:274-307.
CrossRef
Google scholar
|
[9] |
Kong F, Liang C, Wang L, et al. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2 based cathode materials. Adv Energy Mater. 2018;9(2):1802586.
CrossRef
Google scholar
|
[10] |
Yoon CS, Jun D-W, Myung S-T, Sun Y-K. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2017;2(5):1150-1155.
CrossRef
Google scholar
|
[11] |
Chen Y, Song S, Zhang X, Liu Y. The challenges, solutions and development of high energy Ni-rich NCM/NCA LiB cathode materials. J Phys Conf. 2019;1347(1):012012.
CrossRef
Google scholar
|
[12] |
Kawashima K, Ohnishi T, Takada K. High-rate capability of LiCoO2 cathodes. ACS Appl Energy Mater. 2020;3(12):11803-11810.
CrossRef
Google scholar
|
[13] |
Li X, Wang Q, Guo H, Artrith N, Urban A. Understanding the onset of surface degradation in LiNiO2 cathodes. ACS Appl Energy Mater. 2022;1(46):1971.
CrossRef
Google scholar
|
[14] |
Nie Y, Xiao W, Miao C, et al. Improving the structural stability of Ni-rich LiNi0.81Co0.15Al0.04O2 cathode materials with optimal content of trivalent Al ions doping for lithium ions batteries. Ceram Int. 2020;47(7):9717-9726.
CrossRef
Google scholar
|
[15] |
Manthiram A, Song B, Li W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 2016;6:125-139.
CrossRef
Google scholar
|
[16] |
Su Y, Zhang Q, Chen L, et al. Stress accumulation in Ni-rich layered oxide cathodes: origin, impact, and resolution. J Energy Chem. 2021;65:236-253.
CrossRef
Google scholar
|
[17] |
Noh H-J, Youn S, Yoon CS, Sun Y-K. Comparison of the structural and electrochemical properties of layered Li[Nix-CoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources. 2013;233:121-130.
CrossRef
Google scholar
|
[18] |
Cui S, Wei Y, Liu T, et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Adv Energy Mater. 2015;6(4):1501309. https://doi.org/10.1002/aenm.201501309
|
[19] |
Deng ZQ, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phys Chem C. 2011;115(14):7097-7103.
CrossRef
Google scholar
|
[20] |
Jing Q, Zhang J, Yang C, Chen Y, Wang C. A novel and practical hydrothermal method for synthesizing LiNi1/3CO1/3MN1/3O2 cathode material. Ceram Int. 2020;46(12):20020-20026.
CrossRef
Google scholar
|
[21] |
Li Y, Xu C, Dang M, et al. Improved electrochemical performances of LiNi0.5Co0.2Mn0.3O2 modified by Graphene/V2O5 co-coating. Ceram Int. 2021;47(15):21759-21768.
CrossRef
Google scholar
|
[22] |
Li S, Fu X, Zhou J, et al. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating. J Mater Chem A. 2016;4(16):5823-5827.
CrossRef
Google scholar
|
[23] |
Feng Z, Rajagopalan R, Zhang S, et al. A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 cathode. Adv Sci. 2020;8(2):2001809.
CrossRef
Google scholar
|
[24] |
Zhang X, Hu GR, Du K, et al. Enhanced electrochemical performance of Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode material via synergistic modification of cerium doping and ceria coating. Ionics. 2022;29:549-561.
CrossRef
Google scholar
|
[25] |
Makimura Y, Zheng S, Ikuhara Y, Ukyoa Y. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. J Electrochem Soc. 2012;159(7):A1070-A1073.
CrossRef
Google scholar
|
[26] |
Lee K-S, Myung S-T, Prakash J, Yashiro H, Sun Y-K. Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries. Electrochimica Acta. 2008;53(7):3065-3074.
CrossRef
Google scholar
|
[27] |
Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K. Nickel-rich and lithium-rich layered oxide cathodes progress. Adv Energy Mater. 2015;6(1):1501010.
CrossRef
Google scholar
|
[28] |
Kim H, Kim MG, Jeong HY, Nam H, Cho J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 2015;15(3):2111-2119.
CrossRef
Google scholar
|
[29] |
Ye Z, Qiu L, Yang W, et al. Nickel-rich layered cathode materials for lithium-ion batteries. Chem Eur J. 2020;27(13):4249-4269.
CrossRef
Google scholar
|
[30] |
Bianchini F, Fjellvå H, Vajeeston P. A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure. Mater Lett. 2018;219:186-189.
CrossRef
Google scholar
|
[31] |
Lee K-K, Kim K-B. Electrochemical and structural characterization of LiNi1–yCoyO2 (0≤y≤0.2) positive electrodes during initial cycling. J Electrochem Soc. 2000;147(5):1709-1717.
CrossRef
Google scholar
|
[32] |
Kim U-H, Park G-T, Son B-K, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat Energy. 2020;5:860-869.
CrossRef
Google scholar
|
[33] |
Li X, Gao A, Tang Z, et al. Robust surface reconstruction induced by subsurface Ni/Li antisites in Ni-rich cathodes. Adv Funct Mater. 2021;31(16):2010291.
CrossRef
Google scholar
|
[34] |
Wei H-X, Tang L, Huang Y, et al. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater Today. 2021;51:365-392.
CrossRef
Google scholar
|
[35] |
Zeng Z, Fuqiren G, Yang S, et al. Insight into the role of Co and Mn elements in Ni-rich LiNi0.9CoxMn0.08–xAl0.02O2 cathode materials. Ind Eng Chem Res. 2023;62(43):17776-17786.
CrossRef
Google scholar
|
[36] |
Yue P, Wang Z, Guo H, Wu F, He Z, Li X. Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries. J Solid State Electrochem. 2012;16(12):3849-3854.
CrossRef
Google scholar
|
[37] |
Sakka S. Birth of the sol–gel method: early history. J Sol Gel Sci Technol. 2021;102(3):478-481.
CrossRef
Google scholar
|
[38] |
Yue P, Wang Z, Peng W, et al. Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol. 2011;214(3):279-282.
CrossRef
Google scholar
|
[39] |
Liang L, Du K, Peng Z, et al. Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochimica Acta. 2014;130:82-89.
CrossRef
Google scholar
|
[40] |
Ren D, Shen Y, Yang Y, et al. Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(41):35811-35819.
CrossRef
Google scholar
|
[41] |
Yin S, Deng W, Chen J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy. 2021;83:105854.
CrossRef
Google scholar
|
[42] |
Li J, Zhong W, Deng Q, Zhang Q, Yang C. Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries. Int J Extrem Manuf. 2022;4(4):042004.
CrossRef
Google scholar
|
[43] |
Lei T, Li Y, Su Q, et al. High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Al concentration gradient modification. Ceram Int. 2018;44(8):8809-8817.
CrossRef
Google scholar
|
[44] |
Li J, Manthiram A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv Energy Mater. 2019;9(45):1902731.
CrossRef
Google scholar
|
[45] |
Wu EJ, Tepesch PD, Ceder G. Size and charge effects on the structural stability of LiMO2 (M =transition metal) compounds. Phil Mag B. 2009;77(4):1039-1047.
CrossRef
Google scholar
|
[46] |
Zhang B, Li L, Zheng J. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. J Alloys Compd. 2012;520:190-194.
CrossRef
Google scholar
|
[47] |
Gao A, Sun Y, Zhang Q, Zheng J, Lu X. Evolution of Ni/Li antisites under the phase transition of a layered LiNi1/3CO1/3MN1/3O2 cathode. J Mater Chem A. 2020;8(13):6337-6348.
CrossRef
Google scholar
|
[48] |
Shannon RDA. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Crystallography. 1976;32(5):751-767.
CrossRef
Google scholar
|
[49] |
Chen S, Zhang X, Xia M, et al. Issues and challenges of layered lithium nickel cobalt manganese oxides for lithiumion batteries. J Electroanal Chem. 2021;895:115412.
CrossRef
Google scholar
|
[50] |
Jung S-K, Gwon H, Hong J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater. 2013;4(1):1300787.
CrossRef
Google scholar
|
[51] |
Hou P, Yin J, Ding M, Huang J, Xu X. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes. Small. 2017;13(45):1701802.
CrossRef
Google scholar
|
[52] |
Ma X, Kang K, Ceder G, Meng YS. Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2. J Power Sources. 2007;177(1):550-555.
CrossRef
Google scholar
|
[53] |
Kim Y, Kim D, Kang S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem Mater. 2011;23(24):5388-5397.
CrossRef
Google scholar
|
[54] |
Duan Y, Yang L, Zhang M-J, et al. Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides. J Mater Chem A. 2018;7(2):513-519.
CrossRef
Google scholar
|
[55] |
Zheng J, Ye Y, Liu T, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Accounts Chem Res. 2019;52(8):2201-2209.
CrossRef
Google scholar
|
[56] |
Liu H, Wolf M, Karki K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 2017;17(6):3452-3457.
CrossRef
Google scholar
|
[57] |
Nam GW, Park N-Y, Park K-J, et al. Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent. ACS Energy Lett. 2019;4(12):2995-3001.
CrossRef
Google scholar
|
[58] |
Zhang W, Du F-Y, Dai Y, Zheng J-C. Strain engineering of Li+ ion migration in olivine phosphate cathode materials LiMPO4 (M =Mn, Fe, Co) and (LiFePO4)n(LiMnPO4)m superlattices. Phys Chem Chem Phys. 2023;28(8):6142-6152.
CrossRef
Google scholar
|
[59] |
Zhang MJ, Hu X, Li M, et al. Cooling induced surface reconstruction during synthesis of high-Ni layered oxides. Adv Energy Mater. 2019;9(43):1901915. https://doi.org/10.1002/aenm.201901915
|
[60] |
Liu L, Li X-F, Yan Q, et al. Uniform and perfectly linear current–voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires. Phys Chem Chem Phys. 2016;19(1):44-48.
CrossRef
Google scholar
|
[61] |
Zhang J, Zhou D, Yang W, et al. Probing the nature of Li+/Ni2+ disorder on the structure and electrochemical performance in Ni-based layered oxide cathodes. J Electrochem Soc. 2019;166(16):A4097-A4105.
CrossRef
Google scholar
|
[62] |
Wang C, Tan L, Yi H, et al. Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes. Nano Res. 2022;15(10):9038-9046.
CrossRef
Google scholar
|
[63] |
Mukhopadhyay A, Sheldon BW. Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci. 2014;63:58-116.
CrossRef
Google scholar
|
[64] |
Zhou Y-N, Ma J, Hu E, et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat Commun. 2014;18(5):5381.
CrossRef
Google scholar
|
[65] |
Yan P, Zheng J, Gu M, Xiao J, Zhang J-G, Wang C-M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun. 2017;8(1):14101.
CrossRef
Google scholar
|
[66] |
Lin Q, Guan W, Zhou J, et al. Ni–Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode. Nano Energy. 2020;76:105021.
CrossRef
Google scholar
|
[67] |
Yoon W-S, Chung KY, McBreen J, Yang X-Q. A comparative study on structural changes of LiCO1/3Ni1/3MN1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem Commun. 2006;8(8):1388-2481.
CrossRef
Google scholar
|
[68] |
Heiskanen SK, Kim J, Lucht BL. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule. 2019;3(10):2322-2333.
CrossRef
Google scholar
|
[69] |
Najma Y, Robert M, Olivier G, Payam K. Delithiation-induced oxygen vacancy formation increases microcracking of LiCoO2 cathodes. J Power Sources. 2022;533(6):231316.
CrossRef
Google scholar
|
[70] |
Liu X, Zhan X, Hood ZD, Chi M. Probing the origin of microcracks in layered oxide cathodes via electron microscopy. Microsc Microanal. 2019;25(S2):2058-2059.
CrossRef
Google scholar
|
[71] |
Park K-J, Hwang J-Y, Ryu H-H, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: are microcracks really critical? ACS Energy Lett. 2019;4(6):1394-1400.
CrossRef
Google scholar
|
[72] |
Lai J, Zhang J, Li Z, et al. Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. Chem Commun. 2020;56(36):4886-4889.
CrossRef
Google scholar
|
[73] |
Ryu H-H, Park K-J, Yoon CS, Sun Y-K. Capacity fading of Nirich Li[NixCoyMN1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155-1163. https://doi.org/10.1021/acs.chemmater.7b05269
|
[74] |
Kondrakov AO, Schmidt A, Xu J, et al. Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries. J Phys Chem C. 2017;121(6):3286-3294.
CrossRef
Google scholar
|
[75] |
Qiu L, Zhang M, Song Y, et al. Recent advance in structure regulation of high-capacity Ni-rich layered oxide cathodes. EcoMat. 2021;3(5):e12141.
CrossRef
Google scholar
|
[76] |
Feng Y, Li J, Yang X. Intragranular and intergranular crack propagation in nanocrystalline Ni under single-cycle mode I loading. Metals Mater Int. 2021;28(7):1590-1598.
CrossRef
Google scholar
|
[77] |
Qiu L, Zhang M, Song Y, et al. Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of [003] crystallographic textures. Carbon Energy. 2022;5(7):e298.
CrossRef
Google scholar
|
[78] |
Bi Y, Tao J, Wu Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science. 2020;370(6522):1313-1317.
CrossRef
Google scholar
|
[79] |
Qian G, Zhang Y, Li L, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Storage Mater. 2020;27:140-149.
CrossRef
Google scholar
|
[80] |
Ahmed S, Pokle A, Schweidler S, et al. The role of intragranular nanopores in capacity fade of nickel-rich layered Li (Ni1-x-yCoxMny)O2 cathode materials. ACS Nano. 2019;13(9):10694-10704.
CrossRef
Google scholar
|
[81] |
Yan P, Zheng J, Chen T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun. 2018;9(1):2437.
CrossRef
Google scholar
|
[82] |
Lee E, Lee W, Kim J, et al. The effect of high-temperature storage on the reaction heterogeneity of Ni-rich layered cathode materials. Energy Storage Mater. 2022;46:259-268.
CrossRef
Google scholar
|
[83] |
Zheng S, Hong C, Guan X, et al. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. J Power Sources. 2018;412:336-343.
CrossRef
Google scholar
|
[84] |
Wu F, Liu N, Chen L, et al. The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J Energy Chem. 2021;62:351-358.
CrossRef
Google scholar
|
[85] |
Li W, Siachos I, Lee J, et al. Direct observation of breathing phenomenon and phase transformation in Ni-rich cathode materials by in situ TEM. Microsc Microanal. 2021;27(S1):1254-1255.
CrossRef
Google scholar
|
[86] |
Zheng SJ, Huang R, Makimura Y, et al. Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle. J Electrochem Soc. 2019;158(4):A357.
CrossRef
Google scholar
|
[87] |
Zhao J, Zhang W, Huq A, et al. In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv Energy Mater. 2016;7(3):1601266.
CrossRef
Google scholar
|
[88] |
Ceder G, Van der Ven A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochimica Acta. 1999;45(1-2):131-150.
CrossRef
Google scholar
|
[89] |
Zou L, Liu Z, Zhao W, et al. Solid–liquid interfacial reaction trigged propagation of phase transition from surface into bulk lattice of Ni-rich layered cathode. Chem Mater. 2018;30(20):7016-7026.
CrossRef
Google scholar
|
[90] |
Li S, Liu Z, Yang L, et al. Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material. Nano Energy. 2022;98:107335.
CrossRef
Google scholar
|
[91] |
Liang C, Jiang L, Wei Z, Zhang W, Wang Q, Sun J. Insight into the structural evolution and thermal behavior of LiNi0.8Co0.1Mn0.1O2 cathode under deep charge. J Energy Chem. 2021;65:424-432.
CrossRef
Google scholar
|
[92] |
Sun Y, Ren D, Liu G, et al. Correlation between thermal stabilities of nickel-rich cathode materials and battery thermal runaway. Int J Energy Res. 2021;45(15):20867-20877.
CrossRef
Google scholar
|
[93] |
Zhao H, Bai Y, Li Y, et al. Insight into thermal analysis kinetics of surface protected LiNi0.8Co0.15Al0.05O2 cathode for safe lithium-ion batteries. Energy Storage Mater. 2022;49:409-420.
CrossRef
Google scholar
|
[94] |
Yuan K, Li N, Ning R, et al. Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy. Nano Energy. 2020;78:105239.
CrossRef
Google scholar
|
[95] |
Wu L, Nam K-W, Wang X, et al. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater. 2011;23(17):3953-3960.
CrossRef
Google scholar
|
[96] |
Mukherjee P, Faenza NV, Pereira N, et al. Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions. Chem Mater. 2018;30(23):8431-8445.
CrossRef
Google scholar
|
[97] |
Nam K-W, Bak S-M, Hu E, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv Funct Mater. 2012;23(8):1047-1063.
CrossRef
Google scholar
|
[98] |
Wang X, Bai Y, Wang X, Wu C. High-voltage layered ternary oxide cathode materials: failure mechanisms and modification methods. Chin J Chem. 2020;38(12):1847-1869.
CrossRef
Google scholar
|
[99] |
Wu C, Li R, Chen T, et al. Understanding of the irreversible phase transition and Zr-doped modification strategy for a nickel-rich cathode under a high voltage. ACS Sustain Chem Eng. 2022;10(11):3651-3660.
CrossRef
Google scholar
|
[100] |
Yang W, Bai C-J, Xiang W, et al. Dual-modified compact layer and superficial Ti doping for reinforced structural integrity and thermal stability of Ni-rich cathodes. ACS Appl Mater Interfaces. 2021;13(46):54997-55006.
CrossRef
Google scholar
|
[101] |
Dang R, Qu Y, Ma Z, Yu L, Duan L, Lü W. The effect of elemental doping on nickel-rich NCM cathode materials of lithium ion batteries. J Phys Chem C. 2021;126(1):151-159.
CrossRef
Google scholar
|
[102] |
Liu X, Wang S, Wang L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J Power Sources. 2019;438:227017.
CrossRef
Google scholar
|
[103] |
Schipper F, Dixit M, Kovacheva D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A. 2016;4(41):16073-16084.
CrossRef
Google scholar
|
[104] |
Cao Y, Wang L, Yang X, et al. Enabling high-rate discharge capability and stable cycling for Ni-rich layered cathodes via multi-functional modification strategy. Electrochimica Acta. 2022;440:141763.
CrossRef
Google scholar
|
[105] |
Yang W, Xiang W, Chen Y-X, et al. Interfacial regulation of Nirich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces. 2020;12(9):10240-10251.
CrossRef
Google scholar
|
[106] |
Lv H, Li C, Zhao Z, Wu B, Mu D. A review: modification strategies of nickel-rich layer structure cathode (Ni≥0.8) materials for lithium ion power batteries. J Energy Chem. 2021;60:435-450.
CrossRef
Google scholar
|
[107] |
Li ZK, Yu XF, Lv YP, et al. Investigation on the structure and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 modified with Sn. Electrochimica Acta. 2021;400:139468.
CrossRef
Google scholar
|
[108] |
Ryu H-H, Lim H-W, Lee SG, Sun Y-K. Optimization of molybdenum-doped Ni-rich layered cathodes for long-term cycling. Energy Storage Mater. 2023;59(2):102771.
CrossRef
Google scholar
|
[109] |
Li J, Zhang M, Zhang D, Yan Y, Li Z. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J. 2020;402:126195.
CrossRef
Google scholar
|
[110] |
Wang D, Li X, Wang Z, et al. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochimica Acta. 2015;188:48-56.
CrossRef
Google scholar
|
[111] |
Susai FA, Kovacheva D, Chakraborty A, et al. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies. ACS Appl Energy Mater. 2019;2(6):4521-4534.
CrossRef
Google scholar
|
[112] |
Li C, Kan WH, Xie H, et al. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability. Adv Sci. 2018;6(4):1801406.
CrossRef
Google scholar
|
[113] |
Qiu Q-Q, Yuan S-S, Bao J, et al. Suppressing irreversible phase transition and enhancing electrochemical performance of Ni-rich layered cathode LiNi0.9Co0.05Mn0.05O2 by fluorine substitution. J Energy Chem. 2021;61(0):571-581.
CrossRef
Google scholar
|
[114] |
Azhari L, Sousa B, Ahmed R, et al. Stability enhancement and microstructural modification of Ni-rich cathodes via halide doping. ACS Appl Mater Interfaces. 2022;14(41):46523-46536.
CrossRef
Google scholar
|
[115] |
Yao C, Zhou C, Cheng B, Li M. A first-principles study of F and Cl doping in LiNi0.83Co0.08Mn0.08O2 cathode materials. Crystals. 2022;12(9):1297.
CrossRef
Google scholar
|
[116] |
Yang Y, Wang Y, Xue Z, et al. Meticulous guard: the role of Al/F doping in improving the electrochemical performance of high-voltage spinel cathode. J Materiomics. 2020;7(3):585-592.
CrossRef
Google scholar
|
[117] |
Kong F, Liang C, Longo RC, et al. Conflicting roles of anion doping on the electrochemical performance of Li-ion battery cathode materials. Chem Mater. 2016;28(19):6942-6952.
CrossRef
Google scholar
|
[118] |
Zeng X, Zhan C, Lu J, Amine K. Stabilization of a highcapacity and high-power nickel-based cathode for Li-ion batteries. Chem. 2018;4(4):690-704.
CrossRef
Google scholar
|
[119] |
Hu Y, Guo F, Zhu C, et al. Effective and low-cost in situ surface engineering strategy to enhance the interface stability of an ultrahigh Ni-rich NCMA cathode. ACS Appl Mater Interfaces. 2022;14(46):51835-51845.
CrossRef
Google scholar
|
[120] |
Gao H, Cai J, Xu G-L, et al. Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode. Chem Mater. 2019;31(8):2723-2730.
CrossRef
Google scholar
|
[121] |
Li J, Wang J, Lu X, et al. Enhancing high-potential stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode with PrF3 coating. Ceram Int. 2021;47(5):6341-6351.
CrossRef
Google scholar
|
[122] |
Dou L, Tang A, Lin W, et al. Enhancing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes through amorphous coatings. Electrochimica Acta. 2022;12(28):31392-31400.
CrossRef
Google scholar
|
[123] |
Li W, Zhang J, Zhou Y, et al. Regulating the grain orientation and surface structure of primary particles through Tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials. ACS Appl Mater Interfaces. 2020;12(42):47513-47525.
CrossRef
Google scholar
|
[124] |
Gan Z, Lu Y, Gong Y, et al. Enhanced electrochemical behavior of LiNi0.8Co0.1Mn0.1O2 cathode materials by nickel boride coating for LIB. Ceram Int. 2022;48(17):25219-25227.
CrossRef
Google scholar
|
[125] |
Zhou H, Zhou F, Shi S, Yang W, Song Z. Influence of working temperature on the electrochemical characteristics of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for Li-ion batteries. J Alloys Compd. 2020;847(20):156412.
CrossRef
Google scholar
|
[126] |
Liu Y, Tanabe T, Irii Y, et al. Optimization of synthesis condition of water-resistant and thin titanium oxide layer-coated Ni-rich layered cathode materials and their cathode performance. J Appl Electrochem. 2018;2019(49):99-110.
CrossRef
Google scholar
|
[127] |
Razmjoo Khollari MA, Paknahad P, Ghorbanzadeh M. Improvement of the electrochemical performance of a nickel rich LiNi0.5Co0.2Mn0.3O2 cathode material by reduced graphene oxide/SiO2 nanoparticle double-layer coating. New J Chem. 2019;43(3):2766-2775.
CrossRef
Google scholar
|
[128] |
Su Y, Chen G, Chen L, et al. Roles of fast-ion conductor LiTaO3 modifying Ni-rich cathode material for Li-ion batteries. ChemSusChem. 2021;14(8):1955-1961.
CrossRef
Google scholar
|
[129] |
Zhu Z, Duan J, Zhang J, et al. Optimizing the interface engineering and structural stability of nickel-rich layered oxide cathode by dual-function modification. Chem Eng J. 2021;430(2):132908.
CrossRef
Google scholar
|
[130] |
Zhang J, Lan Z, Xi R, Li Y, Zhang C. The cycle stability and rate performance of LiNi0.8Mn0.1Co0.1O2 enhanced by Mg doping and LiFePO4 coating. Chemelectrochem. 2022;9(6):e202101654.
CrossRef
Google scholar
|
[131] |
Tang L-B, Liu Y, Wei H-X, et al. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. J Energy Chem. 2020;55:114-123. https://doi.org/10.1016/j.jechem.2020.06.055
|
[132] |
Liao C, Li F, Liu J. Challenges and modification strategies of Ni-rich cathode materials operating at high-voltage. Nanomaterials. 2022;12(11):1888.
CrossRef
Google scholar
|
[133] |
Ge M, Wi S, Liu X, et al. Kinetic limitations in single-crystal high-nickel cathodes. Angew Chem Int Ed. 2020;60(32):17350-17355.
CrossRef
Google scholar
|
[134] |
Jo C-H, Voronina N, Myung S-T. Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: strategies, status, and challenges to improve energy density and cyclability. Energy Storage Mater. 2022;51:568-587.
CrossRef
Google scholar
|
[135] |
Deng X, Zhang R, Zhou K, et al. A comparative investigation of single crystal and polycrystalline Ni-rich NCMs as cathodes for lithium-ion batteries. Energy Environ Mater. 2021;6(3):e12331.
CrossRef
Google scholar
|
[136] |
Liu Z, Tang R, Xiao F, Zeng L, Wang Y, Liu J. Excellent cycling performance of high-nickel single-crystal cathode material by a well-tailored binary molten-salt method. Appl Surf Sci. 2023;640:158437.
CrossRef
Google scholar
|
[137] |
Nam G, Hwang J, Kang DH, et al. Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries. J Energy Chem. 2023;79(4):562-568.
CrossRef
Google scholar
|
[138] |
Hu Z, Huang Q, Cai W, et al. Research progress on enhancing the performance of high nickel single crystal cathode materials for lithium-ion batteries. Ind Eng Chem Res. 2023;62(6):2410-2427.
CrossRef
Google scholar
|
[139] |
Liu Z-D, Wang C-Y, Zhang J-C, et al. Co-free/Co-poor high-Ni cathode for high energy, stable and low-cost lithium-ion batteries. Rare Met. 2023;42(7):2214-2225.
CrossRef
Google scholar
|
[140] |
Qiu L, Zhang M, Song Y, et al. Origin and regulation of interface fusion during synthesis of single-crystal Ni-rich cathodes. Angew Chem Int Ed. 2023;62(12):e202300209.
CrossRef
Google scholar
|
/
〈 | 〉 |