Hybrid silver nanoparticles: Modes of synthesis and various biomedical applications
Priyanka Singh, Shivang Singh, Balaji Maddiboyina, SaiKrishna Kandalam, Tomasz Walski, Raghvendra A. Bohara
Hybrid silver nanoparticles: Modes of synthesis and various biomedical applications
In the present day, there is a growing trend of employing new strategies to synthesize hybrid nanoparticles, which involve combining various functionalities into a single nanocomposite system. These modern methods differ significantly from the traditional classical approaches and have emerged at the forefront of materials science. The fabrication of hybrid nanomaterials presents an unparalleled opportunity for applications in a wide range of areas, including therapy to diagnosis. The focus of this review article is to shed light on the different modalities of hybrid nanoparticles, providing a concise description of hybrid silver nanoparticles, exploring various modes of synthesis and classification of hybrid silver nanoparticles, and highlighting their advantages. Additionally, we discussed core-shell silver nanoparticles and various types of core and shell combinations based on the material category, such as dielectric, metal, or semiconductor. The two primary classes of hybrid silver nanoparticles were also reviewed. Furthermore, various hybrid nanoparticles and their methods of synthesis were discussed but we emphasize silica as a suitable candidate for hybridization alongside metal nanoparticles. This choice is due to its hydrophilic surface qualities and high surface charge, which provide the desired repulsive forces to minimize aggregation between the metal nanoparticles in the liquid solution. Silica shell encapsulation also provides chemical inertness, robustness and the adaptability to the desired hybrid nanoparticle. Therefore, among all the materials used to coat metal nanoparticles; silica is highly approved.
biomedical applications / hybrid silver nanoparticles / polyvinylpyrrolidone / silica shell / surface enhanced Raman spectroscopy
[1] |
Nguyen NPU, Dang NT, Doan L, Nguyen TTH. Synthesis of silver nanoparticles: from conventional to ‘modern’methods—a review. Processes. 2023;11(9):2617.
CrossRef
Google scholar
|
[2] |
Liu Y, Chen Y, Xiang R. Detection of cancer biomarkers with nanotechnology. Am J Biochem Biotechnol. 2013;9(1):71-89.
CrossRef
Google scholar
|
[3] |
Singh P, Katkar PK, Walski T, Bohara RA. Three in-one fenestrated approaches of yolk-shell, silver-silica nanoparticles: a comparative study of antibacterial, antifungal and anti-cancerous applications. Heliyon. 2023;9(8):e18034.
CrossRef
Google scholar
|
[4] |
Jeevanandam J, Krishnan S, Hii YS, et al. Synthesis approachdependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostructure Chem. 2022;12(5):0123456789-0123456831.
CrossRef
Google scholar
|
[5] |
Ali IAM, Ahmed AB, Al-Ahmed HI. Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Sci Rep. 2023;13(1):1-15.
CrossRef
Google scholar
|
[6] |
Carpen LG, Acsente T, Sătulu V, et al. Hybrid nanostructures obtained by transport and condensation of tungsten oxide vapours onto CNW templates. Nanomaterials. 2021;11(4):835.
CrossRef
Google scholar
|
[7] |
Zhao R, Xiang J, Wang B, Chen L, Tan S. Recent advances in the development of noble metal NPs for cancer therapy. Bioinorgan Chem Appl. 2022;2022:1-14.
CrossRef
Google scholar
|
[8] |
Vargas-Bernal R. Introductory chapter: hybrid nanomaterials. Hybrid Nanomater - Flex Electron Mater. 2020:1-8.
CrossRef
Google scholar
|
[9] |
Povolotskaya AV, Povolotskiy AV, Manshina AA. Hybrid nanostructures: synthesis, morphology and functional properties. Russ Chem Rev. 2015;84(6):579-600.
CrossRef
Google scholar
|
[10] |
Hagarová I, Nemček L. Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: a minireview. Front Chem. 2021;9:1-9.
CrossRef
Google scholar
|
[11] |
Mahudeswaran A, Vivekanandan J, Vijayanand PS. A study on silver nanoparticles embedded DBSA doped nanostructured poly(aniline-co-2-bromoaniline). Mater Today Proc. 2021;47:2154-2158.
CrossRef
Google scholar
|
[12] |
Thomas-Moore BA, del Valle CA, Field RA, Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci. 2022;21(6):123461131.
CrossRef
Google scholar
|
[13] |
El-Naggar NEA, Hussein MH, El-Sawah AA. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci Rep. 2017;7(1):1-20.
CrossRef
Google scholar
|
[14] |
Lee SJ, Begildayeva T, Yeon S, et al. Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds. Environ Pollut. 2021;269:116174.
CrossRef
Google scholar
|
[15] |
Yamazaki Y, Kuwahara Y, Mori K, Kamegawa T, Yamashita H. Enhanced catalysis of plasmonic silver nanoparticles by a combination of macro-/mesoporous nanostructured silica support. J Phys Chem C. 2021;125(17):9150-9157.
CrossRef
Google scholar
|
[16] |
Badán JA, Jauregui G, Navarrete-Astorga E, et al. Solid-state thermal dewetted silver nanoparticles onto electrochemically grown self-standing vertically aligned ZnO nanorods for three-dimensional plasmonic nanostructures. Ceram Int. 2021;47(23):32685-32698.
CrossRef
Google scholar
|
[17] |
Zamarchi F, Vieira IC. Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract. J Pharm Biomed Anal. 2021;196:113912.
CrossRef
Google scholar
|
[18] |
Podagatlapalli GK, Hamad S, Rao SV. Trace-level detection of secondary explosives using hybrid silver-gold nanostructures and nanoparticles achieved with femtosecond laser ablation. J Phys Chem C. 2015;119:16972-16983.
CrossRef
Google scholar
|
[19] |
Botha TL, Elemike EE, Horn S, Onwudiwe DC, Giesy JP, Wepener V. Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (solidago canadensis) plant extract. Sci Rep. 2019;9(1):4169.
CrossRef
Google scholar
|
[20] |
Zhang Z, Liu C, Bai J, et al. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): low premature release and multifunctional cancer theranostic platform. ACS Appl Mater Interfaces. 2015;7(11):6211-6219.
CrossRef
Google scholar
|
[21] |
Bastakoti BP, Guragain S, Yusa SI, Nakashima K. Novel synthesis route for Ag@SiO2 core-shell nanoparticles via micelle template of double hydrophilic block copolymer. RSC Adv. 2012;2(14):5938-5940.
CrossRef
Google scholar
|
[22] |
Chen S, Quan Y, Yu YL, Wang JH. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng. 2017;3(3):313-321.
CrossRef
Google scholar
|
[23] |
Pencheva D, Bryaskova R, Kantardjiev T. Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng C. 2012;32(7):2048-2051.
CrossRef
Google scholar
|
[24] |
Katifelis H, Mukha I, Bouziotis P, et al. Ag/Au bimetallic nanoparticles inhibit tumor growth and prevent metastasis in a mouse model. Int J Nanomed. 2020;15:6019-6032.
CrossRef
Google scholar
|
[25] |
Fatima A, Younas I, Ali MW. An overview on recent advances in biosensor technology and its future application. Arch Pharm Pract. 2022;13(1):5-10.
CrossRef
Google scholar
|
[26] |
Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Baudrit JRV. Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem. 2017;5:1-26.
CrossRef
Google scholar
|
[27] |
Cheng W, Ma J, Cao P, et al. Enzyme-free electrochemical biosensor based on double signal amplification strategy for the ultra-sensitive detection of exosomal MicroRNAs in biological samples. Talanta. 2020;219:121242.
CrossRef
Google scholar
|
[28] |
Chen W, Wang L, He R, Xu X, Jiang W. Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta. 2018;178:458-463.
CrossRef
Google scholar
|
[29] |
Rapuntean S, Horovitz O, Tomoaia-Cotisel M. Antibacterial activity of silver nanoparticles obtained by co-reduction with sodium citrate and tannic acid. J Radiat Res Appl Sci.2018.
CrossRef
Google scholar
|
[30] |
Schihada H, Ma X, Zabel U, et al. Development of a conformational histamine H3 receptor biosensor for the synchronous screening of agonists and inverse agonists. ACS Sens. 2020;5(6):1734-1742.
CrossRef
Google scholar
|
[31] |
Mohsen E, El-Borady OM, Mohamed MB, et al. Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J Radiat Res Appl Sci. 2020;13(1):416-425.
CrossRef
Google scholar
|
[32] |
Nookala S, Venkata N, Vara K, Tollamadugu P, Thimmavajjula GK, Ernest D. Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines. Adv Nano Res. 2015;3(2):97-109.
CrossRef
Google scholar
|
[33] |
Chartarrayawadee W, Charoensin P, Saenma J, et al. Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity. Green Process Synth. 2020;9(1):107-118.
CrossRef
Google scholar
|
[34] |
Hasanzadeh M, Shadjou N. Electrochemical and photo-electrochemical nano-immunesensing using origami paper based method. Mater Sci Eng C. 2016;61:979-1001.
CrossRef
Google scholar
|
[35] |
Hayashi K. Multifunctional silica-based hybrid nanoparticles for biomedical applications. J Ceram Soc Jpn. 2016;124(9):855-862.
CrossRef
Google scholar
|
[36] |
Sun C, Ma L, Qian Q, et al. A chitosan-Au-hyperbranched polyester nanoparticles-based antifouling immunosensor for sensitive detection of carcinoembryonic antigen. Analyst. 2014;139(17):4216-4222.
CrossRef
Google scholar
|
[37] |
Makvandi P, Wang Cyu, Zare EN, Borzacchiello A, Niu L, Tay FR. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv Funct Mater. 2020;30(22).
CrossRef
Google scholar
|
[38] |
Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrugresistant gram-negative bacilli. J Clin Microbiol. 2013;51(6):1678-1684.
CrossRef
Google scholar
|
[39] |
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;1:26.
CrossRef
Google scholar
|
[40] |
Glackin CA. Nanoparticle Delivery of TWIST Small Interfering RNA and Anticancer Drugs: A Therapeutic Approach for Combating Cancer. Vol 44. 1st ed. Elsevier Inc.;2018.
CrossRef
Google scholar
|
[41] |
Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M, Sanati-Nezhad A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv. 2018;25(1):846-861.
CrossRef
Google scholar
|
[42] |
He C, Lu J, Lin W. Hybrid nanoparticles for combination therapy of cancer. J Contr Release. 2015;219:224-236.
CrossRef
Google scholar
|
[43] |
Benelmekki M. Designing hybrid nanoparticles. Des Hybrid Nanoparticles. 2015:1-68.
CrossRef
Google scholar
|
[44] |
Mondal NK, Chowdhury A, Dey U, et al. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis. 2014;4(1):S204-S210.
CrossRef
Google scholar
|
[45] |
Tsekenis G, Chatzipetrou M, Massaouti M, Zergioti I. Comparative assessment of affinity-based techniques for oriented antibody immobilization towards immunosensor performance optimization. J Sens. 2019;2019(i):1-10.
CrossRef
Google scholar
|
[46] |
Zhao Q, Sun XY, Wu B, et al. Construction of biomimetic silver nanoparticles in the treatment of lymphoma. Mater Sci Eng C. 2021;119:111648.
CrossRef
Google scholar
|
[47] |
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282-289.
CrossRef
Google scholar
|
[48] |
Saraidarov T, Levchenko V, Popov I, Reisfeld R. Superlattices and microstructures shape control synthesis of spheroid and rod-like silver nanostructures in organic–inorganic sol–gel composite. Superlattices Microstruct. 2009;46(1–2):171-175.
CrossRef
Google scholar
|
[49] |
Kudelski A, Wojtysiak S. Silica-covered silver and gold nanoresonators for Raman analysis of surfaces of various materials. J Phys Chem C. 2012;116(30):16167-16174.
CrossRef
Google scholar
|
[50] |
Truta LAANA, Sales MGF. Sensors and actuators B: chemical carcinoembryonic antigen imprinting by electropolymerization onacommonconductive glass support and its determination in. Serum Samp. 2019;287:53-63.
CrossRef
Google scholar
|
[51] |
Gupta K, Patra AK. Luminescent europium(III) “turn-on”sensor for G-series chemical warfare simulants: a mechanistic investigation. ACS Sens. 2020;5(5):1268-1272.
CrossRef
Google scholar
|
[52] |
Benelmekki M. An introduction to nanoparticles and nanotechnology. Des Hybrid Nanoparticles. 2014:1-14.
CrossRef
Google scholar
|
[53] |
Zhang T, Song YJ, Zhang XY, Wu JY. Synthesis of silver nanostructures by multistep methods. Sensors. 2014;14(4):5860-5889.
CrossRef
Google scholar
|
[54] |
Fernandes T, Fateixa S, Ferro M, Nogueira HIS, da Daniel-Silva AL, Trindade T. Colloidal dendritic nanostructures of gold and silver for SERS analysis of water pollutants. J Mol Liq. 2021;337:116608.
CrossRef
Google scholar
|
[55] |
Shiao MH, Wu T, Huang HJ, et al. Dendritic forest-like Ag nanostructures prepared using fluoride-assisted galvanic replacement reaction for sers applications. Nanomaterials. 2021;11(6):1359.
CrossRef
Google scholar
|
[56] |
Raveendran J, Docoslis A. Detection and quantification of toxicants in food and water using Ag–Au core-shell fractal SERS nanostructures and multivariate analysis. Talanta. 2021;231(March):122383.
CrossRef
Google scholar
|
[57] |
Wang T, Wang S, Cheng Z, et al. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem Eng J. 2021;424:130323.
CrossRef
Google scholar
|
[58] |
Wang TJ, Huang YT, Liu ZY, Barveen NR. Photochemical synthesis of ZnO/Ag heterogeneous nanostructure on chemically patterned ferroelectric crystals for high performance SERS detection. J Alloys Compd. 2021;864:158120.
CrossRef
Google scholar
|
[59] |
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer therapy by silver nanoparticles: fiction or reality? Int J Mol Sci. 2022;23(2):839.
CrossRef
Google scholar
|
[60] |
Kim YJ, Rahman MM, Lee SM, et al. Assessment of in vivo genotoxicity of citrated-coated silver nanoparticles via transcriptomic analysis of rabbit liver tissue. Int J Nanomed. 2019;14:393-405.
CrossRef
Google scholar
|
[61] |
Marinescu L, Ficai D, Oprea O, et al. Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater. 2020;2020:1-14.
CrossRef
Google scholar
|
[62] |
Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res. 2007;40(10):1067-1076.
CrossRef
Google scholar
|
[63] |
Dawadi S, Katuwal S, Gupta A, et al. Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomater. 2021;2021:1-23.
CrossRef
Google scholar
|
[64] |
Neto FNS, Morais LA, Gorup LF, et al. Facile synthesis of PVPcoated silver nanoparticles and evaluation of their physicochemical, antimicrobial and toxic activity. Colloid Interfac. 2023;7(4):66.
CrossRef
Google scholar
|
[65] |
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.
CrossRef
Google scholar
|
[66] |
Holtz RD, Souza Filho AG, Brocchi M, Martins D, Durán N, Alves OL. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology. 2010;21(18):185102.
CrossRef
Google scholar
|
[67] |
Ramanathan S, Gopinath SCB. Potentials in synthesizing nanostructured silver particles. Microsyst Technol. 2017;23(10):4345-4357.
CrossRef
Google scholar
|
[68] |
Botsa SM, Kumar YP, Basavaiah K. Facile simultaneous synthesis of tetraaniline nanostructures/silver nanoparticles as heterogeneous catalyst for the efficient catalytic reduction of 4-nitrophenol to 4-aminophenol. RSC Adv. 2020;10(37):22043-22053.
CrossRef
Google scholar
|
[69] |
Lee SY, Jeon HC, Yang SM. Unconventional methods for fabricating nanostructures toward high-fidelity sensors. J Mater Chem. 2012;22(13):5900-5913.
CrossRef
Google scholar
|
[70] |
Métraux GS, Mirkin CA. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater. 2005;17(4):412-415.
CrossRef
Google scholar
|
[71] |
Yin Y, Qiu T, Ma L, et al. Exploring rolled-up Au-Ag bimetallic microtubes for surface-enhanced Raman scattering sensor. J Phys Chem C. 2012;116(48):25504-25508.
CrossRef
Google scholar
|
[72] |
de la Puente P, Azab AK. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol. 2017;98(6):529-541.
CrossRef
Google scholar
|
[73] |
Zhou Y, Wang R, Teng Z, et al. Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive cancer theranostics. NPG Asia Mater. 2016;8(9):e313-e318.
CrossRef
Google scholar
|
[74] |
Malola S, Nieminen P, Pihlajamäi A, Hämäläinen J, Kärkkäinen T, Häkkinen H. A method for structure prediction of metal-ligand interfaces of hybrid nanoparticles. Nat Commun. 2019;10(1):3973.
CrossRef
Google scholar
|
[75] |
Bansod BK, Kumar T, Rana S, Singh I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron.2017.
CrossRef
Google scholar
|
[76] |
Lara S, Perez-potti A. Applications of nanomaterials for immunosensing. Biosensors. 2018;8(4):104.
CrossRef
Google scholar
|
[77] |
Silvestri B, Armanetti P, Sanità G, et al. Silver-nanoparticles as plasmon-resonant enhancers for eumelanin’s photoacoustic signal in a self-structured hybrid nanoprobe. Mater Sci Eng C. 2019;102(April):788-797.
CrossRef
Google scholar
|
[78] |
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metalbased nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnol. 2021;19(1):256.
CrossRef
Google scholar
|
[79] |
Gurunathan S, Kang MH, Kim JH. Combination effect of silver nanoparticles and histone deacetylases inhibitor in human alveolar basal epithelial cells. Molecules. 2018;23(8):2046.
CrossRef
Google scholar
|
[80] |
Tsuji M, Gomi S, Maeda Y, et al. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir. 2012;28(24):8845-8861.
CrossRef
Google scholar
|
[81] |
Song YJ, Wang M, Zhang XY, Wu JY, Zhang T. Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of highyield silver nanospheres and nanowires. Nanoscale Res Lett. 2014;9(1):1-8.
CrossRef
Google scholar
|
[82] |
Li Z, Jiang S, Huo Y, et al. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale. 2018;10(13):5897-5905.
CrossRef
Google scholar
|
[83] |
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticlebased immunochemical biosensors and assays: recent advances and challenges. Chem Rev. 2017;117(15):9973-10042.
CrossRef
Google scholar
|
[84] |
Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW. Growth of spherical gold satellites on the surface of Au@Ag@SiO2 coreshell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein. ACS Appl Mater Interfaces. 2019;11(3):3617-3626.
CrossRef
Google scholar
|
[85] |
Huynh KH, Pham XH, Kim J, et al. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int J Mol Sci. 2020;21(14):1-29.
CrossRef
Google scholar
|
[86] |
Meng XK, Tang SC, Vongehr S. A review on diverse silver nanostructures. J Mater Sci Technol. 2010;26(6):487-522.
CrossRef
Google scholar
|
[87] |
Zumpano R, Polli F, D’Agostino C, Antiochia R, Favero G, Mazzei F. Nanostructure-based electrochemical immunosensors as diagnostic tools. Electrochem. 2021;2(1):10-28.
CrossRef
Google scholar
|
[88] |
Lu L, Kobayashi A, Kikkawa Y, Tawa K, Ozaki Y. Oriented attachment-based assembly of dendritic silver nanostructures at room temperature. J Phys Chem B. 2006;110(46):23234-23241.
CrossRef
Google scholar
|
[89] |
McEachran M, Keogh D, Pietrobon B, et al. Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles. J Am Chem Soc. 2011;133(21):8066-8069.
CrossRef
Google scholar
|
[90] |
Chen CC, Hendrickson AA. New dislocation etchant for silver. J Appl Phys. 1971;42(13):5375-5378.
CrossRef
Google scholar
|
[91] |
Zhang Y, Yang P, Zhang L. Size- and shape-tunable silver nanoparticles created through facile aqueous synthesis. J Nanoparticle Res. 2013;15(1):1329.
CrossRef
Google scholar
|
[92] |
Li Z, Jia L, Li Y, He T, Li XM. Ammonia-free preparation of Ag@SiO2 core/shell nanoparticles. Appl Surf Sci. 2015;345:122-126.
CrossRef
Google scholar
|
[93] |
Machulek A, Moisés De Oliveira HP, Gehlen MH. Preparation of silver nanoprisms using poly(N-Vinyl-2-Pyrrolidone) as a colloid-stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes. Photochem Photobiol Sci. 2003;2(9):921-925.
CrossRef
Google scholar
|
[94] |
Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131-140.
CrossRef
Google scholar
|
[95] |
Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates. Biomaterials. 2011;133(46):18931-18939.
CrossRef
Google scholar
|
[96] |
Chen B, Jiao X, Chen D. Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. Cryst Growth Des. 2010;10(8):3378-3386.
CrossRef
Google scholar
|
[97] |
Yi Z, Xu X, Wu X, et al. Silver nanoplates: controlled preparation, self-assembly, and applications in surface-enhanced Raman scattering. Appl Phys Mater Sci Process. 2013;110(2):335-342.
CrossRef
Google scholar
|
[98] |
Malekzadeh M, Yeung KL, Halali M, Chang Q. Preparation and antibacterial behaviour of nanostructured Ag@SiO2-penicillin with silver nanoplates. New J Chem. 2019;43(42):16612-16620.
CrossRef
Google scholar
|
[99] |
Wang Y, Chen P, Liu M. Synthesis of hollow silver nanostructures by a simple strategy. Nanotechnology. 2008;19(4):045607.
CrossRef
Google scholar
|
[100] |
Popov A, Brasiunas B, Kausaite-Minkstimiene A, Ramanaviciene A. Metal nanoparticle and quantum dot tags for signal amplification in electrochemical immunosensors for biomarker detection. Chemosensors. 2021;9(4):85.
CrossRef
Google scholar
|
[101] |
Abdal-Hay A, Khalil KA, Lim J, Lim JK. Fabrication and characterization of silver nanostructures conformal coating layer onto electrospun N6 nanofibers with improved physical properties. J Sol Gel Sci Technol. 2014;71(1):184-191.
CrossRef
Google scholar
|
[102] |
Rycenga M, Cobley CM, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev. 2011;111(6):3669-3712.
CrossRef
Google scholar
|
[103] |
Pastoriza-Santos I, Liz-Marzán LM. Formation of PVPprotected metal nanoparticles in DMF. Langmuir. 2002;18(7):2888-2894.
CrossRef
Google scholar
|
[104] |
Sannegowda LK. Metal nanoparticles for electrochemical sensing applications. Handb Nanomater Sens Appl. 2021:589-629.
CrossRef
Google scholar
|
[105] |
Guo D, Zhu L, Huang Z, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34(32):7884-7894.
CrossRef
Google scholar
|
[106] |
Li M, Luo Z, Zhao Y. Self-assembled hybrid nanostructures: versatile multifunctional nanoplatforms for cancer diagnosis and therapy. Chem Mater. 2018;30(1):25-53.
CrossRef
Google scholar
|
[107] |
Zhang T, Song Y, Zhang X, Wu J. Synthesis of silver nanostructures by multistep methods. Sensors. 2014;14(4):5860-5889.
CrossRef
Google scholar
|
[108] |
Fahmy HM, Mosleh AM, Elghany AA, et al. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 2019;9(35):20118-20136.
CrossRef
Google scholar
|
[109] |
Austin LA, MacKey MA, Dreaden EC, El-Sayed MA. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol. 2014;88(7):1391-1417.
CrossRef
Google scholar
|
[110] |
Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20(4):1-23.
CrossRef
Google scholar
|
[111] |
Singh P, Katkar PK, Patil UM, Bohara RA. A robust electrochemical immunosensor based on core-shell nanostructured silica-coated silver for cancer (Carcinoembryonic-Antigen- CEA) diagnosis. RSC Adv. 2021;11(17):10130-10143.
CrossRef
Google scholar
|
[112] |
Xue C, Millstone JE, Li S, Mirkin CA. Plasmon-driven synthesis of triangular core-shell nanoprisms from gold seeds. Angew Chem Int Ed. 2007;46(44):8436-8439.
CrossRef
Google scholar
|
[113] |
Zhu S, Du CL, Fu Y. Localized surface plasmon resonancebased hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B. Opt Mater. 2009;31(11):1608-1613.
CrossRef
Google scholar
|
[114] |
Acharya D, Mohanta B, Pandey P, Nasiri F. Antibacterial properties of synthesized Ag and Ag@SiO2 core-shell nanoparticles: a comparative study. Can J Phys. 2018;96(8):955-960.
CrossRef
Google scholar
|
[115] |
Ertem E, Gutt B, Zuber F, et al Core-shell silver nanoparticles in endodontic disinfection solutions enable long-term antimicrobial effect on oral biofilms. ACS Appl Mater Interfaces. 2017;9(40):34762-34772.
CrossRef
Google scholar
|
[116] |
Kang BK, Son DM, Kim Y. Preparation and characterization of silver nanoparticles embedded in silica sol particles. Bull Kor Chem Soc. 2011;32(10):3707-3711.
CrossRef
Google scholar
|
[117] |
Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017;7(1):1-18.
CrossRef
Google scholar
|
[118] |
Liu S, Han MY. Silica-coated metal nanoparticles. Chem - An Asian J. 2010;5(1):36-45.
CrossRef
Google scholar
|
[119] |
Fateixa S, Nogueira HIS, Trindade T. Hybrid nanostructures for SERS: materials development and chemical detection. Phys Chem Chem Phys. 2015;17:21046-21071.
CrossRef
Google scholar
|
[120] |
Pazos E, Sleep E, Rubert CM, Lee SS, Tantakitti F. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nano fibers: hybrid nanostructures with antimicrobial properties. J Am Chem Soc. 2016;138(17):5507-5510.
CrossRef
Google scholar
|
[121] |
Bryaskova R, Pencheva D, Nikolov S, Kantardjiev T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by (polyvinylpyrrolidone PVP). J Chem Biol. 2011;4(4):185-191.
CrossRef
Google scholar
|
[122] |
Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res. 2016;42(3):301-312.
CrossRef
Google scholar
|
[123] |
Apalangya V, Rangari V, Tiimob B, Jeelani S, Samuel T. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl Surf Sci. 2014;295:108-114.
CrossRef
Google scholar
|
[124] |
Aymonier C, Schlotterbeck U, Antonietti L, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun. 2002;24:3018-3019.
CrossRef
Google scholar
|
[125] |
Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341-6350.
CrossRef
Google scholar
|
[126] |
Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9(2):78.
CrossRef
Google scholar
|
[127] |
Mele G, Pinna S, Loseto G, Melpignano A, Quarta G. A482 what is the best maintenance therapy for multiple myeloma. Clin Lymphoma Myeloma. 2012;9:S77.
CrossRef
Google scholar
|
[128] |
Garcia T, Lafuente D, Blanco J, et al. Oral subchronic exposure to silver nanoparticles in rats. Food Chem Toxicol. 2016;92:177-187.
CrossRef
Google scholar
|
[129] |
Francis S, Nair KM, Paul N, Koshy EP, Mathew B. Catalytic activities of green synthesized silver and gold nanoparticles. Mater Today Proc. 2019;9:97-104.
CrossRef
Google scholar
|
[130] |
Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ. 2010;408(5):999-1006.
CrossRef
Google scholar
|
[131] |
Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZurR, Raja NI. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol. 2021;105(6):2261-2275.
CrossRef
Google scholar
|
[132] |
Moodley N. Antimicrobial Activity of Ciprofloxacin-coated Gold Nanoparticles on Selected Pathogens. Thesis. Durban University of Technology. 2014.
|
[133] |
Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-1720.
CrossRef
Google scholar
|
[134] |
Shnoudeh AJ, Hamad I, Abdo RW, et al. Synthesis, Characterization, and Applications of Metal Nanoparticles. Elsevier Inc.;2019.
CrossRef
Google scholar
|
[135] |
Kan CX, Zhu JJ, Zhu XG. Silver nanostructures with wellcontrolled shapes: synthesis, characterization and growth mechanisms. J Phys D Appl Phys. 2008;41(15):155304.
CrossRef
Google scholar
|
[136] |
Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot ‘green’synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res. 2018;341(12):2012-2018.
CrossRef
Google scholar
|
[137] |
Li M, Luo Z, Zhao Y. Self-assembled hybrid nanostructures: versatile multifunctional nanoplatforms for cancer diagnosis and therapy. Chem Mater. 2018;30(1):25-53.
CrossRef
Google scholar
|
[138] |
Wang X, He F, Zhu X, Tang F, Li L. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence. Sci Rep. 2014;4:1-6.
CrossRef
Google scholar
|
[139] |
Azeredo HMCD, Agroindustry ET, Mesquita RDS. Antimicrobial nanostructures in food packaging. Trends Food Sci Technol.2012.
CrossRef
Google scholar
|
[140] |
Mollaee J, Molaei F, Morsali A, Joo SW, Bruno G, Rudbari HA. Preparation of silver nanostructures from a new benzopyrazine silver(I) nitrate coordination polymer. Inorg Chem Commun. 2014;43:67-69.
CrossRef
Google scholar
|
[141] |
Kim T, Braun GB, She ZG, Hussain S, Ruoslahti E, Sailor MJ. Composite porous silicon-silver nanoparticles as theranostic antibacterial agents. ACS Appl Mater Interfaces. 2016;8(44):30449-30457.
CrossRef
Google scholar
|
[142] |
Tan W, Wang K, He X, et al. Bionanotechnology based on silica nanoparticles. Med Res Rev. 2004;24(5):621-638.
CrossRef
Google scholar
|
[143] |
Van Dong PV, Ha CH, Binh LT, Kasbohm J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett. 2012;2(9).
CrossRef
Google scholar
|
[144] |
Zhang H, Zhang C. Transport of silver nanoparticles capped with different stabilizers in water saturated porous media. J Mater Environ Sci. 2014;5(1):231-236.
|
[145] |
Allafchian AR, Banifatemi SS, Jalali SAH. Synthesis and characterization of Ag/SiO2 nanoparticles embedded in TPS and TEOS sol-gel matrix with excellent antibacterial activity. Nanosci Nanotechnol - Asia. 2017;8(1):33-40.
CrossRef
Google scholar
|
[146] |
Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796.
CrossRef
Google scholar
|
[147] |
Oda M. Metal nano-particles. J Japan Inst Electron Packag. 2002;5(6):523-528.
CrossRef
Google scholar
|
[148] |
Liu M, Guyot-Sionnest P. Synthesis and characterization of Au/Ag core/shell nanorods. J Phys Chem B. 2004;108(19):5882-5888.
CrossRef
Google scholar
|
[149] |
Product GN, Two R. Chapter 1: introduction. In: Fluid Mech. 1966:1-16.
|
[150] |
Ye W, Krüger K, Sánchez-Iglesias A, et al. CTAB stabilizes silver on gold nanorods. Chem Mater. 2020;32(4):1650-1656.
CrossRef
Google scholar
|
[151] |
Oziri OJ, Wang Y, Watanabe T, et al. PEGylation of silver nanoparticles by physisorption of cyclic poly (ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity. Nanoscale Adv. 2022;4(2):532-545.
CrossRef
Google scholar
|
[152] |
Fratoddi I. Hydrophobic and hydrophilic Au and Ag nanoparticles. Breakthroughs and perspectives. Nanomaterials. 2018;8(1):11.
CrossRef
Google scholar
|
[153] |
Chandra S, Barick KC, Bahadur D. Oxide and hybrid nanostructures for therapeutic applications. Adv Drug Deliv Rev. 2011;63(14–15):1267-1281.
CrossRef
Google scholar
|
[154] |
Hu X, Zhang Y, Ding T, et al. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8.
CrossRef
Google scholar
|
[155] |
Fu Y, Zhang J, Lakowicz JR. Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures. Langmuir. 2013;29(8):2731-2738.
CrossRef
Google scholar
|
[156] |
Prasher P, Sharma M, Mudila H, et al. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloids Interface Sci Commun. 2020;35:100244.
CrossRef
Google scholar
|
[157] |
Kasithevar M, Periakaruppan P, Muthupandian S, Mohan M. Antibacterial efficacy of silver nanoparticles against multidrug resistant clinical isolates from post-surgical wound infections. Microb Pathog. 2017;107:327-334.
CrossRef
Google scholar
|
[158] |
Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87-95.
CrossRef
Google scholar
|
[159] |
Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:1-10.
CrossRef
Google scholar
|
[160] |
Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol. 2009;75(9):2973-2976.
CrossRef
Google scholar
|
[161] |
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385-406.
|
[162] |
Zhang Y, Peng H, Huang W, Zhou Y, Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci. 2008;325(2):371-376.
CrossRef
Google scholar
|
[163] |
Yoon KY, Byeon JH, Park JH, Ji JH, Bae GN, Hwang J. Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ Eng Sci. 2008;25(2):289-293.
CrossRef
Google scholar
|
[164] |
Tian Y, Qi J, Zhang W, Cai Q, Jiang X. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces. 2014;6(15):12038-12045.
CrossRef
Google scholar
|
[165] |
Kim YH, Lee DK, Cha HG, Kim CW, Kang YS. Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. J Phys Chem C. 2007;111(9):3629-3635.
CrossRef
Google scholar
|
[166] |
Dhanalekshmi KI, Meena KS. Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;128:887-890.
CrossRef
Google scholar
|
[167] |
Thiagamani SMK, Rajini N, Siengchin S, Varada Rajulu A, Hariram N, Ayrilmis N. Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Composites Part B. 2019;165:516-525.
CrossRef
Google scholar
|
[168] |
Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces. 2022;210:210.
CrossRef
Google scholar
|
[169] |
Dung TTN, Nam VN, Nhan TT, et al. Silver nanoparticles as potential antiviral agents against african swine fever virus. Mater Res Express. 2019;6(12).
CrossRef
Google scholar
|
[170] |
Gabizon AA, de Rosales RTM, La-Beck NM. Translational considerations in nanomedicine: the oncology perspective. Adv Drug Deliv Rev. 2020;158:140-157.
CrossRef
Google scholar
|
[171] |
Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces. 2022;210:112254.
CrossRef
Google scholar
|
[172] |
Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine Nanotechnol Biol Med. 2010;6(4):570-574.
CrossRef
Google scholar
|
[173] |
Mauricio MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in medicine: a focus on vascular oxidative stress. Oxid Med Cell Longev. 2018;2018:1-20.
CrossRef
Google scholar
|
[174] |
Bastos V, Ferreira-de-Oliveira JMP, Carrola J, et al. Coating independent cytotoxicity of citrate- and PEG-coated silver nanoparticles on a human hepatoma cell line. J Environ Sci. 2017;51:191-201.
CrossRef
Google scholar
|
[175] |
Cai L, Qin X, Xu Z, et al. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega. 2019;4(7):12036-12042.
CrossRef
Google scholar
|
[176] |
Nguyen KC, Seligy VL, Massarsky A, et al. Comparison of toxicity of uncoated and coated silver nanoparticles. J Phys Conf Ser. 2013;429(1):012025.
CrossRef
Google scholar
|
[177] |
Ahamed M, Karns M, Goodson M, et al. DNAdamage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233(3):404-410.
CrossRef
Google scholar
|
[178] |
Danciu C, Pinzaru I, Coricovac D, et al. Betulin silver nanoparticles qualify as efficient antimelanoma agents in in vitro and in vivo studies. Eur J Pharm Biopharm. 2019;134:1-19.
CrossRef
Google scholar
|
[179] |
Castiglioni S, Cazzaniga A, Perrotta C, Maier JAM. Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells. Toxicol Lett. 2015;237(3):237-243.
CrossRef
Google scholar
|
[180] |
Pinzaru I, Coricovac D, Dehelean C, et al. Stable PEG-coated silver nanoparticles –a comprehensive toxicological profile. Food Chem Toxicol. 2018;111:546-556.
CrossRef
Google scholar
|
[181] |
Wang X, Li T, Su X, et al. Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice. J Appl Toxicol. 2019;39(6):908-918.
CrossRef
Google scholar
|
[182] |
Mukha I, Vityuk N, Grodzyuk G, et al. Anticancer effect of Ag, Au, and Ag/Au bimetallic nanoparticles prepared in the presence of tryptophan. J Nanosci Nanotechnol. 2017;17(12):8987-8994.
CrossRef
Google scholar
|
[183] |
Prasannaraj G, Venkatachalam P. Green engineering of biomolecule-coated metallic silver nanoparticles and their potential cytotoxic activity against cancer cell lines. Adv Nat Sci Nanosci Nanotechnol. 2017;8(2):025001.
CrossRef
Google scholar
|
[184] |
Mansour HH, Eid M, El-Arnaouty MB. Effect of silver nanoparticles synthesized by gamma radiation on the cytotoxicity of doxorubicin in human cancer cell lines and experimental animals. Hum Exp Toxicol. 2018;37(1):38-50.
CrossRef
Google scholar
|
[185] |
Yeasmin S, Datta HK, Chaudhuri S, Malik D, Bandyopadhyay A. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017;242:757-766.
CrossRef
Google scholar
|
[186] |
Ronkainen NJ, Okon SL. Nanomaterial-based electrochemical immunosensors for clinically significant biomarkers. Mat Basel. 2014;7(6):4669-4709.
CrossRef
Google scholar
|
[187] |
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: are we there yet? Int J Mol Sci. 2021;22(1):1-22.
CrossRef
Google scholar
|
[188] |
Cho I-H, Lee J, Kim J, et al. Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors. 2018;18(1):207.
CrossRef
Google scholar
|
[189] |
Hao Y, Feng S, Liu Y, Xu J, Wang J. Electrochemical sensor based on indium tin oxide glass modified with poly (ethyleneimine)/phosphomolybdic acid composite multilayers. Electroanalysis. 2017;29(4):1188-1196.
CrossRef
Google scholar
|
[190] |
Zhong Z, Wu W, Wang D, et al. Biosensors and bioelectronics nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron. 2010;25(10):2379-2383.
CrossRef
Google scholar
|
[191] |
Wang B, Akiba U, Anzai J. Recent progress in nanomaterialbased electrochemical biosensors for cancer biomarkers: a review. Molecules. 2017;22(7).
CrossRef
Google scholar
|
[192] |
Aydın EB, Aydın M, Sezgintürk MK. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFαin human saliva and serum samples. Biosens Bioelectron. 2017;97:169-176.
CrossRef
Google scholar
|
[193] |
Zhou H, Gan X, Wang J, Zhu X, Li G. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal Chem. 2005;77(18):6102-6104.
CrossRef
Google scholar
|
[194] |
Zhou C, Liu D, Xu L, et al. A sensitive label-free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio. Sci Rep. 2015;5:1-7.
CrossRef
Google scholar
|
[195] |
Oliveira N, Costa-Rama E, Viswanathan S, Delerue-Matos C, Pereira L, Morais S. Label-free voltammetric immunosensor for prostate specific antigen detection. Electroanalysis. 2018;30(11):2604-2611.
CrossRef
Google scholar
|
[196] |
Li J, Gao T, Gu S, Zhi J, Yang J, Li G. An electrochemical biosensor for the assay of alpha-fetoprotein-L3 with practical applications. Biosens Bioelectron. 2017;87:352-357.
CrossRef
Google scholar
|
[197] |
Zhao Y, Chen J, Zhong H, et al. Functionalized Ag/Fe-MOFs nanocomposite as a novel endogenous redox mediator for determination of α2,6-sialylated glycans in serum. Microchim Acta. 2020;187(12):649.
CrossRef
Google scholar
|
[198] |
Xu D, Hou B, Qian L, Zhang X, Liu G. Non-enzymatic electrochemical sensor based on sliver nanoparticle-decorated carbon nanotubes. Molecules. 2019;24(18):1-11.
CrossRef
Google scholar
|
[199] |
Mohammadi S, Khayatian G. Silver nanoparticles modified with thiomalic acid as a colorimetric probe for determination of cystamine. Microchim Acta. 2017;184(1):253-259.
CrossRef
Google scholar
|
[200] |
Dewangan L, Korram J, Karbhal I, Nagwanshi R, Jena VK, Satnami ML. A colorimetric nanoprobe based on enzymeimmobilized silver nanoparticles for the efficient detection of cholesterol. RSC Adv. 2019;9(72):42085-42095.
CrossRef
Google scholar
|
[201] |
Miao P, Han K, Sun H, et al. Melamine functionalized silver nanoparticles as the probe for electrochemical sensing of clenbuterol. ACS Appl Mater Interfaces. 2014;6(11):8667-8672.
CrossRef
Google scholar
|
[202] |
Lokina S, Stephen A, Kaviyarasan V, Arulvasu C, Narayanan VSC. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur J Med Chem. 2014;76:256-263.
CrossRef
Google scholar
|
[203] |
Lin J, Ju H. Electrochemical and chemiluminescent immunosensors for tumor markers. Biosens Bioelectron. 2005;20:1461-1470.
CrossRef
Google scholar
|
[204] |
Chen W, Wang L, He R, Xu X, Jiang W. Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta. 2018;178(July):458-463.
CrossRef
Google scholar
|
[205] |
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):1-27.
CrossRef
Google scholar
|
/
〈 | 〉 |