Ordering Degree Regulation of Pt2NiCo Intermetallics for Efficient Oxygen Reduction Reaction

Zhang Chen-Hao , Hu Han-Yu , Yang Jun-Hao , Zhang Qian , Yang Chang , Wang De-Li

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (4) : 2411281

PDF (3945KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (4) : 2411281 DOI: 10.61558/2993-074X.3519
ARTICLE

Ordering Degree Regulation of Pt2NiCo Intermetallics for Efficient Oxygen Reduction Reaction

Author information +
History +
PDF (3945KB)

Abstract

Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction (ORR). Atomic ordered intermetallic compounds (IMC) provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms, thus exhibiting superior electrocatalytic activity and durability. However, quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging. Herein, a series of ternary Pt2NiCo intermetallic catalysts (o-Pt2NiCo) with different ordering degree were synthesized by annealing temperature modulation. Among them, the o-Pt2NiCo which annealed at 800 °C for two hours exhibits the highest ordering degree and the optimal ORR activity, which the mass activity of o-Pt2NiCo is 1.8 times and 2.8 times higher than that of disordered Pt2NiCo alloy and Pt/C. Furthermore, the o-Pt2NiCo still maintains 70.8% mass activity after 30,000 potential cycles. Additionally, the ORR activity test results for Pt2NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity. This work provides a prospective design direction for ternary Pt-based electrocatalysts.

Keywords

Fuel cell / Oxygen reduction reaction / Electrocatalysis / Intermetallic compound / Ordering degree

Cite this article

Download citation ▾
Zhang Chen-Hao, Hu Han-Yu, Yang Jun-Hao, Zhang Qian, Yang Chang, Wang De-Li. Ordering Degree Regulation of Pt2NiCo Intermetallics for Efficient Oxygen Reduction Reaction. Journal of Electrochemistry, 2025, 31(4): 2411281 DOI:10.61558/2993-074X.3519

登录浏览全文

4963

注册一个新账户 忘记密码

Supporting Information

Additional data, detailed experimental procedures, and supplementary figures are available free of charge on the journal’s website at https://jelectrochem.xmu.edu.cn/journal/.

Acknowledgements

This work was supported by the National Natural Science Foundation (22279036) and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (B21003).

Conflict of Interest

The authors declare no conflict of interest.

Data availability

Data will be made available on request.

References

[1]

Sun Q, Li X H, Wang K X, Ye T N, Chen J S. Inorganic non-carbon supported Pt catalysts and synergetic effects for oxygen reduction reaction[J]. Energy Environ. Sci., 2023, 16(5): 1838-1869.

[2]

Zhang C H, Zhang Q, Hu Y Z, Hu H Y, Yang J H, Yang C, Zhu Y, Tu Z K, Wang D L. N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2024, 36(3): 110429. DOI:10.1016/j.cclet.2024.110429.

[3]

Chen F D, Xie Z Y, Li M T, Chen S G, Ding W, Li L, Li J, Wei Z D. Series reports from professor Wei’s group of chongqing university: advancements in electrochemical energy conversions (1/4): report 1: high-performance oxygen reduction catalysts for fuel cells[J]. J. Electrochem., 2024, 30(7): 2314007.

[4]

Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2023, 29(5): 2203081.

[5]

Chen H J, Tang M H, Chen S L. Hydrophobicity optimization of cathode catalyst layer for proton exchange membrane fuel cell[J]. J. Electrochem., 2023, 29(9): 2207061.

[6]

Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.

[7]

Zhang H, Shen P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chem. Rev., 2012, 112(5): 2780-2832.

[8]

Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds P E, Ekins P, Shah N, Ward K R. The role of hydrogen and fuel cells in the global energy system[J]. Energy Environ. Sci., 2019, 12(2): 463-491.

[9]

Yang Z L, Yang H Z, Shang L, Zhang T R. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202113278.

[10]

Lin F X, Li M G, Zeng L Y, Luo M C, Guo S J. Intermetallic nanocrystals for fuel-cells-based electrocatalysis[J]. Chem. Rev., 2023, 123(22): 12507-12593.

[11]

Yan L, Li P P, Zhu Q Y, Kumar A, Sun K, Tian S B, Sun X M. Atomically precise electrocatalysts for oxygen reduction reaction[J]. Chem, 2023, 9(2): 280-342.

[12]

Zhang Q, Shen T, Song M, Wang S, Zhang J L, Huang X, Lu S F, Wang D L. High-entropy L12-Pt(FeCoNiCuZn)3 intermetallics for ultrastable oxygen reduction reaction[J]. J. Energy Chem., 2023, 86: 158-166.

[13]

Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nat. Nanotechnol., 2021, 16(2): 140-147.

[14]

Lazaridis T, Stühmeier B M, Gasteiger H A, El-Sayed H A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts[J]. Nat. Catal., 2022, 5(5): 363-373.

[15]

Song M, Zhang Q, Shen T, Luo G Y, Wang D L. Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2023, 35(8): 109083.

[16]

Hu Y Z, Wang S, Shen T, Zhu Y, Wang D L. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction[J]. Energy Storage Sci. Technol., 2022, 11(4): 1264-1277.

[17]

Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H, Li Q. Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain[J]. Adv. Energy Mater., 2019, 9(17): 1803771.

[18]

Yan W, Wang X, Liu M M, Ma K Y, Wang L Q, Liu Q C, Wang C K, Jiang X, Li H, Tang Y W, Fu G T. PCTS-controlled synthesis of L10/L12-Typed Pt-Mn intermetallics for electrocatalytic oxygen reduction[J]. Adv. Funct. Mater., 2024, 34(6): 2310487.

[19]

Zhang C H, Yang J H, Yang C, Hu H Y, Zhang Q, Luo G Y, Kong W J, Chen Y Q, Yang H P, Wang D L. Recent advances in confined Pt-based electrocatalysts for oxygen reduction reaction[J]. ChemCatChem, 2024, 16(21): e202400554.

[20]

Song T W, Xu C, Sheng Z T, Yan H K, Tong L, Liu J, Zeng W J, Zuo L J, Yin P, Zuo M, Chu S Q, Chen P, Liang H W. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts[J]. Nat. Commun., 2022, 13(1): 6521.

[21]

Wang Z X, Yao X Z, Kang Y Q, Miao L Q, Xia D S, Gan L. Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity[J]. Adv. Funct. Mater., 2019, 29(35): 1902987.

[22]

Li J, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z, Shen B, Kim Y S, Zhang P, Sun S. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. J. Am. Chem. Soc., 2018, 140(8): 2926-2932.

[23]

Wang D, Xin H L, Hovden R, Wang H, Yu Y, Muller D A, Disalvo F J, Abruña H D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat. Mater., 2013, 12(1): 81-87.

[24]

Li S, Li J J, Xu C, Zhang L, Li A, Song T W, Zhang W, Tong L, Liang H W. Multigram-scale synthesis of high-Pt-content PtCo intermetallic catalysts for proton exchange membrane fuel cells[J]. ACS Mater. Lett., 2024, 6(2): 706-712.

[25]

Gong M X, Zhu J, Liu M J, Liu P F, Deng Z P, Shen T, Zhao T H, Lin R Q, Lu Y, Yang S Z, Liang Z X, Bak S M, Stavitski E, Wu Q, Adzic R R, Xin H L, Wang D L. Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization[J]. Nanoscale, 2019, 11(42): 20301-20306.

[26]

Xu S L, Yin P, Zuo L J, Yin S Y, Zuo M, Zhang W, Fu X Z, Liang H W. Cuprous sulfide intermediate assisted synthesis of PtCu3 intermetallic electrocatalysts in multigram scale for oxygen reduction[J]. Inorg. Chem. Front., 2023, 10(11): 3359-3366.

[27]

Zhao T, Luo E G, Li Y, Wang X, Liu C P, Xing W, Ge J J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction[J]. Sci. Chin. Mater., 2021, 64(7): 1671-1678.

[28]

Zhang L B, Ji X D, Wang X R, Fu Y Q, Zhu H, Liu T X. Chemically ordered Pt-Co-Cu/C as excellent electrochemical catalyst for oxygen reduction reaction[J]. J. Electrochem. Soc., 2020, 167(2): 024507.

[29]

Qin J Y, Zou P C, Zhang R, Wang C Y, Yao L B, Xin H L L. Pt-Fe-Cu ordered intermetallics encapsulated with N-doped carbon as high-performance catalysts for oxygen reduction reaction[J]. ACS Sustain. Chem. Eng., 2022, 10(42): 14024-14033.

[30]

Stamenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Nørskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angew. Chem. Int. Ed., 2006, 45(18): 2897-2901.

[31]

Gong M X, Deng Z P, Xiao D D, Han L L, Zhao T H, Lu Y, Shen T, Liu X P, Lin R Q, Huang T, Zhou G W, Xin H L, Wang D L. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: integrating multiple advantages into one catalyst[J]. ACS Catal., 2019, 9(5): 4488-4494.

[32]

Jin H, Xu Z W, Hu Z Y, Yin Z W, Wang Z, Deng Z, Wei P, Feng S H, Dong S H, Liu J F, Luo S C, Qiu Z D, Zhou L, Mai L Q, Su B L, Zhao D Y, Liu Y. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction[J]. Nat. Commun., 2023, 14(1): 1518-1528.

[33]

Chen J X, Dong J B, Huo J L, Li C Z, Du L, Cui Z M, Liao S J. Ultrathin Co-N-C layer modified Pt-Co intermetallic nanoparticles leading to a high-performance electrocatalyst toward oxygen reduction and methanol oxidation[J]. Small, 2023, 19(37): 2301337.

[34]

Li M X, Cai Y D, Zhang J J, Sun H X, Li Z, Liu Y J, Zhang X, Dai X P, Gao F, Song W Y. Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation[J]. Nano Res., 2022, 15(4): 3230-3238.

[35]

Hu Y Z, Guo X Y, Shen T, Zhu Y, Wang D L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction[J]. ACS Catal., 2022, 12(9): 5380-5387.

[36]

Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L, Snyder J D, Li D G, Herron J A, Mavrikakis M, Chi M F, More K L, Li Y D, Markovic N M, Somorjai G A, Yang P D, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343.

[37]

Hu Y Z, Shen T, Zhao X R, Zhang J J, Lu Y, Shen J, Lu S F, Tu Z K, Xin H L L, Wang D L. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis[J]. Appl. Catal. B Environ., 2020, 279: 119370.

[38]

Song T W, Chen M X, Yin P, Tong L, Zuo M, Chu S Q, Chen P, Liang H W. Intermetallic PtFe electrocatalysts for the oxygen reduction reaction: ordering degree-dependent performance[J]. Small, 2022, 18(31): 2202916.

[39]

Xiong Y, Yang Y, Joress H, Padgett E, Gupta U, Yarlagadda V, Agyeman-Budu D N, Huang X, Moylan T E, Zeng R, Kongkanand A, Escobedo F A, Brock J D, Disalvo F J, Muller D A, Abruña H D. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales[J]. PNAS, 2019, 116(6): 1974-1983.

[40]

Desario D Y, Disalvo F J. Ordered intermetallic Pt-Sn nanoparticles: exploring ordering behavior across the bulk phase diagram[J]. Chem. Mater., 2014, 26(8): 2750-2757.

[41]

Cui M J, Yang C P, Hwang S, Yang M H, Overa S, Dong Q, Yao Y G, Brozena A H, Cullen D A, Chi M, Blum T F, Morris D, Finfrock Z, Wang X Z, Zhang P, Goncharov V G, Guo X F, Luo J, Mo Y F, Jiao F, Hu L B. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition[J]. Sci. Adv., 2022, 8(4): eabm4322.

AI Summary AI Mindmap
PDF (3945KB)

620

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/