Structure Regulation of Electric Double Layer via Hydrogen Bonding Effect to Realize High-Stability Lithium-Metal Batteries

  • Sheng Liu 1 ,
  • Chaozhu Shu , 1 ,
  • Yu Yan 1,2 ,
  • Dayue Du 1,3 ,
  • Longfei Ren 1 ,
  • Ting Zeng 1 ,
  • Xiaojuan Wen 1 ,
  • Haoyang Xu 1 ,
  • Xinxiang Wang 1 ,
  • Guilei Tian 1 ,
  • Ying Zeng , 1
Expand
  • 1. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, China
  • 2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 3. State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
czshu@imr.ac.cn
zengy@cdut.edu.cn

Received date: 08 Feb 2023

Revised date: 26 Mar 2023

Copyright

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

The interfacial chemistry of solid electrolyte interphases (SEI) on lithium (Li) electrode is directly determined by the structural chemistry of the electric double layer (EDL) at the interface. Herein, a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed (p-hydroxybenzoic acid (pHA) is selected as proof-of-concept). According to the molecular dynamics (MD) simulation and density functional theory (DFT) calculation results, the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL, reduces the lowest unoccupied molecular orbital (LUMO) energy level of anions in the EDL, and the number of free solvent molecules, which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition. Based on this strategy, Li||Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm−2, and the long-term cycle stability of Li||Li cells is increased to 1200 h. In addition, the full cell pairing with the commercial LiFePO4 (LFP) cathodes exhibits stable cycling performance at 1C, with a capacity retention close to 90% after 200 cycles.

Cite this article

Sheng Liu , Chaozhu Shu , Yu Yan , Dayue Du , Longfei Ren , Ting Zeng , Xiaojuan Wen , Haoyang Xu , Xinxiang Wang , Guilei Tian , Ying Zeng . Structure Regulation of Electric Double Layer via Hydrogen Bonding Effect to Realize High-Stability Lithium-Metal Batteries[J]. Energy & Environmental Materials, 2024 , 7(3) : 12635 . DOI: 10.1002/eem2.12635

1
D. Lin , Y. Liu , Y. Cui , Nat. Nanotechnol. 2017, 12, 194.

2
D. Chen , H. Tan , X. Rui , Q. Zhang , Y. Feng , H. Geng , C. Li , S. Huang , Y. Yu , InfoMat 2019, 1, 251.

3
L. Zhou , T.-T. Zuo , C. Y. Kwok , S. Y. Kim , A. Assoud , Q. Zhang , J. Janek , L. F. Nazar , Nat. Energy 2022, 7, 83.

4
C. Shu , J. Wang , J. Long , H.-K. Liu , S.-X. Dou , Adv. Mater. 2019, 31, 1804587.

5
Y. Chen , Z. Yu , P. Rudnicki , H. Gong , Z. Huang , S. C. Kim , J. C. Lai , X. Kong , J. Qin , Y. Cui , Z. Bao , J. Am. Chem. Soc. 2021, 143, 18703.

6
B.-Q. Li , L. Kong , C.-X. Zhao , Q. Jin , X. Chen , H.-J. Peng , J.-L. Qin , J.-X. Chen , H. Yuan , Q. Zhang , J.-Q. Huang , InfoMat 2019, 1, 533.

7
J. Chen , T. Liu , L. Gao , Y. Qian , Y. Liu , X. Kong , J. Energy Chem. 2021, 60, 178.

8
C. Li , S. Liu , C. Shi , G. Liang , Z. Lu , R. Fu , D. Wu , Nat. Commun. 2019, 10, 1363.

9
Y. Fang , S. L. Zhang , Z.-P. Wu , D. Luan , X. W. Lou , Sci. Adv. 2021, 7, eabg3626.

10
T. Li , X. Q. Zhang , N. Yao , Y. X. Yao , L. P. Hou , X. Chen , M. Y. Zhou , J. Q. Huang , Q. Zhang , Angew. Chem. Int. Ed. Engl. 2021, 60, 22683.

11
F. Li , J. He , J. Liu , M. Wu , Y. Hou , H. Wang , S. Qi , Q. Liu , J. Hu , J. Ma , Angew. Chem. Int. Ed. Engl. 2021, 60, 6600.

12
X. Li , J. Wang , InfoMat 2020, 2, 3.

13
D. Lin , Y. Liu , Z. Liang , H. W. Lee , J. Sun , H. Wang , K. Yan , J. Xie , Y. Cui , Nat. Nanotechnol. 2016, 11, 626.

14
G. Li , Z. Liu , Q. Huang , Y. Gao , M. Regula , D. Wang , L.-Q. Chen , D. Wang , Nat. Energy 2018, 3, 1076.

15
Y. Yan , C. Shu , R. Zheng , M. Li , Z. Ran , M. He , A. Hu , T. Zeng , H. Xu , Y. Zeng , Nano Res. 2021, 15, 3150.

16
Y. Sun , Y. Zhao , J. Wang , J. Liang , C. Wang , Q. Sun , X. Lin , K. R. Adair , J. Luo , D. Wang , R. Li , M. Cai , T. K. Sham , X. Sun , Adv. Mater. 2019, 31, e1806541.

17
C. Cui , C. Yang , N. Eidson , J. Chen , F. Han , L. Chen , C. Luo , P. F. Wang , X. Fan , C. Wang , Adv. Mater. 2020, 32, e1906427.

18
Z. Tu , S. Choudhury , M. J. Zachman , S. Wei , K. Zhang , L. F. Kourkoutis , L. A. Archer , Joule 2017, 1, 394.

19
M. J. Lee , J. Han , K. Lee , Y. J. Lee , B. G. Kim , K. N. Jung , B. J. Kim , S. W. Lee , Nature 2022, 601, 217.

20
Y. Zhao , T. Zhou , T. Ashirov , M. E. Kazzi , C. Cancellieri , L. P. H. Jeurgens , J. W. Choi , A. Coskun , Nat. Commun. 2022, 13, 2575.

21
Z. Yu , P. E. Rudnicki , Z. Zhang , Z. Huang , H. Celik , S. T. Oyakhire , Y. Chen , X. Kong , S. C. Kim , X. Xiao , H. Wang , Y. Zheng , G. A. Kamat , M. S. Kim , S. F. Bent , J. Qin , Y. Cui , Z. Bao , Nat. Energy 2022, 7, 94.

22
Z. Lin , Q. Xia , W. Wang , W. Li , S. Chou , InfoMat 2019, 1, 376.

23
U. Pal , D. Rakov , B. Lu , B. Sayahpour , F. Chen , B. Roy , D. R. MacFarlane , M. Armand , P. C. Howlett , Y. S. Meng , M. Forsyth , Energ. Environ. Sci. 2022, 15, 1907.

24
Y. Ma , Z. Zhou , C. Li , L. Wang , Y. Wang , X. Cheng , P. Zuo , C. Du , H. Huo , Y. Gao , G. Yin , Energy Storage Mater. 2018, 11, 197.

25
X. Ren , L. Zou , S. Jiao , D. Mei , M. H. Engelhard , Q. Li , H. Lee , C. Niu , B. D. Adams , C. Wang , J. Liu , J.-G. Zhang , W. Xu , ACS Energy Lett. 2019, 4, 896.

26
J. Fu , X. Ji , J. Chen , L. Chen , X. Fan , D. Mu , C. Wang , Angew. Chem. Int. Ed. Engl. 2020, 59, 22194.

27
H. Jia , Y. Xu , X. Zhang , S. D. Burton , P. Gao , B. E. Matthews , M. H. Engelhard , K. S. Han , L. Zhong , C. Wang , W. Xu , Angew. Chem. Int. Ed. Engl. 2021, 60, 12999.

28
Y. Yamada , J. Wang , S. Ko , E. Watanabe , A. Yamada , Nat. Energy 2019, 4, 269.

29
Y. Liang , C.-Z. Zhao , H. Yuan , Y. Chen , W. Zhang , J.-Q. Huang , D. Yu , Y. Liu , M.-M. Titirici , Y.-L. Chueh , H. Yu , Q. Zhang , InfoMat 2019, 1, 6.

30
C. Zhu , C. Sun , R. Li , S. Weng , L. Fan , X. Wang , L. Chen , M. Noked , X. Fan , ACS Energy Lett. 2022, 7, 1338.

31
S. Chen , J. Zheng , D. Mei , K. S. Han , M. H. Engelhard , W. Zhao , W. Xu , J. Liu , J.-G. Zhang , Adv. Mater. 2018, 30, 1706102.

32
Y. Z. Wang , X. Y. Shan , L. P. Ma , J. W. Wang , D. W. Wang , Z. Q. Peng , H. M. Cheng , F. Li , Adv. Energy Mater. 2019, 9, 1803715.

33
W. Schmickler , J. Solid State Electrochem. 2020, 24, 2175.

34
R. Xu , X. Shen , X. X. Ma , C. Yan , X. Q. Zhang , X. Chen , J. F. Ding , J. Q. Huang , Angew. Chem. Int. Ed. Engl. 2021, 60, 4215.

35
W. Zhang , Y. Lu , L. Wan , P. Zhou , Y. Xia , S. Yan , X. Chen , H. Zhou , H. Dong , K. Liu , Nat. Commun. 2022, 13, 2029.

36
S. J. Shin , D. H. Kim , G. Bae , S. Ringe , H. Choi , H. K. Lim , C. H. Choi , H. Kim , Nat. Commun. 2022, 13, 174.

37
C. Yan , H.-R. Li , X. Chen , X.-Q. Zhang , X.-B. Cheng , R. Xu , J.-Q. Huang , Q. Zhang , J. Am. Chem. Soc. 2019, 141, 9422.

38
L. Li , G. Xu , S. Zhang , S. Dong , S. Wang , Z. Cui , X. Du , C. Wang , B. Xie , J. Du , X. Zhou , G. Cui , ACS Energy Lett. 2022, 7, 591.

39
O. B. Chae , V. A. K. Adiraju , B. L. Lucht , ACS Energy Lett. 2021, 6, 3851.

40
X. Wang , S. Wang , H. Wang , W. Tu , Y. Zhao , S. Li , Q. Liu , J. Wu , Y. Fu , C. Han , F. Kang , B. Li , Adv. Mater. 2021, 33, e2007945.

41
W. Wahyudi , V. Ladelta , L. Tsetseris , M. M. Alsabban , X. Guo , E. Yengel , H. Faber , B. Adilbekova , A. Seitkhan , A. H. Emwas , M. N. Hedhili , L. J. Li , V. Tung , N. Hadjichristidis , T. D. Anthopoulos , J. Ming , Adv. Funct. Mater. 2021, 31, 31.

42
H. Yang , H.-B. Liu , Z.-S. Tang , Z.-D. Qiu , H.-X. Zhu , Z.-X. Song , A.-L. Jia , J. Environ. Chem. Eng. 2021, 9, 106352.

43
Q. K. Zhang , X. Q. Zhang , L. P. Hou , S. Y. Sun , Y. X. Zhan , J. L. Liang , F. S. Zhang , X. N. Feng , B. Q. Li , J. Q. Huang , Adv. Energy Mater. 2022, 12, 12.

44
G. Wang , X. Xiong , D. Xie , X. Fu , X. Ma , Y. Li , Y. Liu , Z. Lin , C. Yang , M. Liu , Energy Storage Mater. 2019, 23, 701.

45
D. Lu , X. Lei , S. Weng , R. Li , J. Li , L. Lv , H. Zhang , Y. Huang , J. Zhang , S. Zhang , L. Fan , X. Wang , L. Chen , G. Cui , D. Su , X. Fan , Energ. Environ. Sci. 2022, 15, 3331.

46
P. Xiao , R. Luo , Z. Piao , C. Li , J. Wang , K. Yu , G. Zhou , H.-M. Cheng , ACS Energy Lett. 2021, 6, 3170.

47
Z. Guo , X. Song , Q. Zhang , N. Zhan , Z. Hou , Q. Gao , Z. Liu , Z. Shen , Y. Zhao , ACS Energy Lett. 2022, 7, 569.

48
J. F. Ding , R. Xu , N. Yao , X. Chen , Y. Xiao , Y. X. Yao , C. Yan , J. Xie , J. Q. Huang , Angew. Chem. Int. Ed. Engl. 2021, 60, 11442.

49
J. Holoubek , M. Yu , S. Yu , M. Li , Z. Wu , D. Xia , P. Bhaladhare , M. S. Gonzalez , T. A. Pascal , P. Liu , Z. Chen , ACS Energy Lett. 2020, 5, 1438.

50
R. Xu , J. F. Ding , X. X. Ma , C. Yan , Y. X. Yao , J. Q. Huang , Adv. Mater. 2021, 33, e2105962.

51
X. Fan , X. Ji , F. Han , J. Yue , J. Chen , L. Chen , T. Deng , J. Jiang , C. Wang , Sci. Adv. 2018, 4, eaau9245.

52
P. Jaumaux , X. Yang , B. Zhang , J. Safaei , X. Tang , D. Zhou , C. Wang , G. Wang , Angew. Chem. Int. Ed. Engl. 2021, 60, 19965.

53
X. Cao , P. Gao , X. Ren , L. Zou , M. H. Engelhard , B. E. Matthews , J. Hu , C. Niu , D. Liu , B. W. Arey , C. Wang , J. Xiao , J. Liu , W. Xu , J. G. Zhang , Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2020357118.

54
H. Xu , Y. Li , A. Zhou , N. Wu , S. Xin , Z. Li , J. B. Goodenough , Nano Lett. 2018, 18, 7414.

55
P. Xiao , Y. Zhao , Z. Piao , B. Li , G. Zhou , H.-M. Cheng , Energ. Environ. Sci. 2022, 15, 2435.

56
H. Wang , Z. Yu , X. Kong , W. Huang , Z. Zhang , D. G. Mackanic , X. Huang , J. Qin , Z. Bao , Y. Cui , Adv. Mater. 2021, 33, e2008619.

57
J. Shi , C. Xu , J. Lai , Z. Li , Y. Zhang , Y. Liu , K. Ding , Y. P. Cai , R. Shang , Q. Zheng , Angew. Chem. Int. Ed. Engl. 2023, 62, e202218151.

58
Y. Huang , R. Li , S. Weng , H. Zhang , C. Zhu , D. Lu , C. Sun , X. Huang , T. Deng , L. Fan , L. Chen , X. Wang , X. Fan , Energ. Environ. Sci. 2022, 15, 4349.

59
J. Meng , M. Lei , C. Lai , Q. Wu , Y. Liu , C. Li , Angew. Chem. Int. Ed. Engl. 2021, 60, 23256.

60
X. Zheng , L. Huang , W. Luo , H. Wang , Y. Dai , X. Liu , Z. Wang , H. Zheng , Y. Huang , ACS Energy Lett. 2021, 6, 2054.

61
S. Liu , X. Ji , N. Piao , J. Chen , N. Eidson , J. Xu , P. Wang , L. Chen , J. Zhang , T. Deng , S. Hou , T. Jin , H. Wan , J. Li , J. Tu , C. Wang , Angew. Chem. Int. Ed. Engl. 2021, 60, 3661.

62
E. Peled , S. Menkin , J. Electrochem. Soc. 2017, 164, A1703.

63
M. Wu , Y. Li , X. Liu , S. Yang , J. Ma , S. Dou , SmartMat 2021, 2, 5.

64
F. A. Soto , Y. Ma , J. M. Martinez de la Hoz , J. M. Seminario , P. B. Balbuena , Chem. Mater. 2015, 27, 7990.

65
B. Han , Z. Zhang , Y. Zou , K. Xu , G. Xu , H. Wang , Y. Meng , J. Deng , M. Li , M. Gu , Adv. Mater. 2021, 33, e2100404.

Options
Outlines

/