Fe-Induced Electronic Transfer and Structural Evolution of Lotus Pod-Like CoNiFePx@P,N-C Heterostructure for Sustainable Oxygen Evolution

  • Xiaojun Zeng , 1 ,
  • Qingqing Zhang 1 ,
  • Chulong Jin 1 ,
  • Hui Huang , 2 ,
  • Yanfeng Gao , 1,3
Expand
  • 1. Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
  • 2. Singapore Institute of Technology, 10 Dover Drive, Singapore City 138683, Singapore
  • 3. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
zengxiaojun@jcu.edu.cn
hui.huang@singaporetech.edu.sg
yfgao@shu.edu.cn

Received date: 28 Jan 2023

Revised date: 22 Mar 2023

Copyright

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation, and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is still challenging. Herein, we present a facile ion exchange and phosphating processes to transform intestine-like CoNiPx@P,N-C into lotus pod-like CoNiFePx@P,N-C heterostructure in which numerous P,N-codoped carbon-coated CoNiFePx nanoparticles tightly anchors on the 2D carbon matrix. Meanwhile, the as-prepared CoNiFePx@P,N-C enables a core-shell structure, high specific surface area, and hierarchical pore structure, which present abundant heterointerfaces and fully exposed active sites. Notably, the incorporation of Fe can also induce electron transfer in CoNiPx@P,N-C, thereby promoting the oxygen evolution reaction. Consequently, CoNiFePx@P,N-C delivers a low overpotential of 278 mV (vs RHE) at a current density of 10 mA cm−1 and inherits excellent long-term stability with no observable current density decay after 30 h of chronoamperometry test. This work not only highlights heteroatom induction to tune the electronic structure but also provides a facile approach for developing advanced and stable oxygen evolution reaction electrocatalysts with abundant heterointerfaces.

Cite this article

Xiaojun Zeng , Qingqing Zhang , Chulong Jin , Hui Huang , Yanfeng Gao . Fe-Induced Electronic Transfer and Structural Evolution of Lotus Pod-Like CoNiFePx@P,N-C Heterostructure for Sustainable Oxygen Evolution[J]. Energy & Environmental Materials, 2024 , 7(3) : 12628 . DOI: 10.1002/eem2.12628

1
D. Yan , C. Xia , W. Zhang , Q. Hu , C. He , B. Xia , S. Wang , Adv. Energy Mater. 2022, 12, 2202317.

2
K. Yeo , K. Lee , H. Kim , J. Lee , S. Kim , Energy Environ. Sci. 2022, 15, 3449.

3
Z. Wu , F. Chen , B. Li , S. Yu , Y. Finfrock , D. Meira , Q. Yan , P. Zhu , M. Chen , T. Song , Z. Yin , H. Liang , S. Zhang , G. Wan , H. Wang , Nat. Mater. 2023, 22, 100.

4
L. Zeng , Z. Zhao , F. Lv , Z. Xia , S. Lu , J. Li , K. Sun , K. Wang , Y. Sun , Q. Huang , Y. Chen , Q. Zhang , L. Gu , G. Lu , S. Guo , Nat. Commun. 2022, 13, 3822.

5
L. Peng , N. Yang , Y. Yang , Q. Wang , X. Xie , D. Sun-Waterhouse , L. Shang , T. Zhang , G. Waterhouse , Angew. Chem. Int. Ed. 2021, 60, 24612.

6
Y. Yao , Z. Zhang , L. Jiao , Energy Environ. Mater. 2022, 5, 470.

7
T. Tang , Z. Jiang , J. Deng , S. Niu , Z. Yao , W. Jiang , L. Zhang , J. Hu , Nano Res. 2022, 15, 10021.

8
Y. Yan , C. Liu , H. Jian , X. Cheng , T. Hu , D. Wang , L. Shang , G. Chen , P. Schaaf , X. Wang , E. Kan , T. Zhang , Adv. Funct. Mater. 2021, 31, 2009610.

9
N. Khan , I. Ahmad , N. Rashid , M. Zafar , F. Shehzad , Z. Ullah , A. Ul-Hamid , M. Nazar , M. Junaid , M. Faheem , S. Shafqat , U. Jabeen , A. Dahshan , Int. J. Hydrog. Energy 2022, 47, 30970.

10
J. Chi , X. Zeng , X. Shang , B. Dong , Y. Chai , C. Liu , M. Marin , Y. Yin , Adv. Funct. Mater. 2019, 29, 1901790.

11
T. Liu , S. Yang , J. Guan , J. Niu , Z. Zhang , F. Wang , Small Methods 2022, 6, 2101156.

12
N. Khan , N. Rashid , M. Junaid , M. Zafar , M. Faheem , I. Ahmad , ACS Appl. Energy Mater. 2019, 2, 3587.

13
S. Sanati , A. Morsali , H. García , Energy Environ. Sci. 2022, 15, 3119.

14
X. Zeng , J. Shui , X. Liu , Q. Liu , Y. Li , J. Shang , L. Zheng , R. Yu , Adv. Energy Mater. 2018, 8, 1701345.

15
X. Zeng , Y. Zhao , X. Hu , G. Stucky , M. Moskovits , Small Struct. 2021, 2, 2000138.

16
H. Sun , X. Xu , H. Kim , W. Jung , W. Zhou , Z. Shao , Energy Environ. Mater. 2022,

DOI

17
X. Zeng , Y. Ye , Y. Wang , R. Yu , M. Moskovits , G. Stucky , J. Adv. Ceram. 2023, 12, 553.

18
X. Zeng , H. Zhang , X. Zhang , Q. Zhang , Y. Chen , R. Yu , M. Moskovits , Nano Mater. Sci. 2022, 4, 393.

19
I. Ahmad , J. Ahmed , S. Batool , M. Zafar , A. Hanif , Zahidullah , M. Nazar , A. Ul-Hamid , U. Jabeen , A. Dahshan , M. Idrees , S. Shehzadi , J. Alloys Compd. 2022, 894, 162409.

20
G. Zhang , Y. Li , X. Xiao , Y. Shan , Y. Bai , H. Xue , H. Pang , Z. Tian , Q. Xu , Nano Lett. 2021, 21, 3016.

21
X. Ren , F. Liu , Q. Wang , H. Song , S. Luo , S. Li , G. Yang , B. Deng , Z. Huang , X. Wang , L. Shi , J. Ye , Appl. Catal. B Environ. 2022, 303, 120887.

22
Y. Deng , Y. Cao , Y. Xia , X. Xi , Y. Wang , W. Jiang , D. Yang , A. Dong , T. Li , Adv. Energy Mater. 2022, 12, 2202394.

23
X. Wang , L. Chai , J. Ding , L. Zhong , Y. Du , T. Li , Y. Hu , J. Qian , S. Huang , Nano Energy 2019, 62, 745.

24
Z. Duan , D. Zhao , Y. Sun , X. Tan , X. Wu , Nano Res. 2022, 15, 8865.

25
Q. Shao , P. Wang , X. Huang , Adv. Funct. Mater. 2019, 29, 1806419.

26
G. Zhang , H. Xu , Y. Li , Adv. Sci. 2019, 6, 1901627.

27
R. Fan , J. Xie , H. Liu , H. Wang , M. Li , N. Yu , R. Luan , Y. Chai , B. Dong , Chem. Eng. J. 2022, 431, 134040.

28
J. Kang , X. Qiu , Q. Hu , J. Zhong , X. Gao , R. Huang , C. Wan , L. Liu , X. Duan , L. Guo , Nat. Catal. 2021, 4, 1050.

29
C. Huang , Y. Zhong , J. Chen , J. Li , W. Zhang , J. Zhou , Y. Zhang , L. Yu , Y. Yu , Chem. Eng. J. 2021, 403, 126304.

30
Z. Niu , S. Wang , R. Luo , P. Wei , K. Li , W. Wang , Q. Yang , Anal. Methods 2023, 15, 1441.

31
S. Zhao , L. Zeng , G. Cheng , L. Yu , H. Zeng , Chin. Chem. Lett. 2019, 30, 605.

32
C. Chen , Y. Tuo , Q. Lu , H. Lu , S. Zhang , Y. Zhou , J. Zhang , Z. Liu , Z. Kang , X. Feng , D. Chen , Appl. Catal. B Environ. 2021, 287, 119953.

33
T. Ren , M. Li , Y. Chu , J. Chen , J. Energy Chem. 2018, 27, 930.

34
J. Wang , Q. Yang , J. Zhou , K. Sun , Z. Zhang , X. Feng , T. Li , Nano Res. 2010, 3, 211.

35
J. Hei , G. Xu , B. Wei , L. Zhang , H. Ding , D. Liu , Appl. Surf. Sci. 2021, 549, 149297.

36
X. Zhou , Y. Zi , L. Xu , T. Li , J. Yang , J. Tang , Inorg. Chem. 2021, 60, 11661.

37
E. Cao , Z. Chen , H. Wu , P. Yu , Y. Wang , F. Xiao , S. Chen , S. Du , Y. Xie , Y. Wu , Z. Ren , Angew. Chem. Int. Ed. 2020, 59, 4154.

38
Q. Liang , L. Zhong , C. Du , Y. Luo , J. Zhao , Y. Zheng , J. Xu , J. Ma , C. Liu , S. Li , Q. Yan , ACS Nano 2019, 13, 7975.

39
Q. Mou , Z. Xu , W. Zuo , T. Shi , E. Li , G. Cheng , X. Liu , H. Zheng , H. Li , P. Zhao , Mater. Chem. Front. 2022, 6, 2750.

40
D. Chen , Q. Sun , C. Han , Y. Guo , Q. Huang , W. Goddard , J. Qian , J. Mater. Chem. A 2022, 10, 16007.

41
Y. Lu , Y. Deng , S. Lu , Y. Liu , J. Lang , X. Cao , H. Gu , Nanoscale 2019, 11, 21259.

42
Q. Kang , M. Li , J. Shi , Q. Lu , F. Gao , ACS Appl. Mater. Interfaces 2020, 12, 19447.

43
X. Zeng , Z. Wu , T. Nie , C. Zhao , R. Yu , G. Stucky , Y. Gao , ACS Appl. Nano Mater. 2022, 5, 11474.

44
C. Hang , J. Zhang , J. Zhu , W. Li , Z. Kou , Y. Huang , Adv. Energy Mater. 2018, 8, 1703539.

45
B. Garlyyev , J. Fichtner , O. Piqué , O. Schneider , A. Bandarenka , F. Calle-Vallejo , Chem. Sci. 2019, 10, 8060.

46
L. Tian , X. Yan , X. Chen , L. Liu , X. Chen , J. Mater. Chem. A 2016, 4, 13011.

47
X. Zhang , A. Shan , S. Duan , H. Zhao , R. Wang , W. Lau , RSC Adv. 2019, 9, 40811.

48
L. Ji , Y. Wei , P. Wu , M. Xu , T. Wang , S. Wang , Q. Liang , T. Meyer , Z. Chen , Chem. Mater. 2021, 33, 9165.

49
D. Li , C. Zhou , R. Yang , Y. Xing , S. Xu , D. Jiang , D. Tian , W. Shi , ACS Sustain. Chem. Eng. 2021, 9, 7737.

50
W. Zhang , Y. Zou , H. Liu , S. Chen , X. Wang , H. Zhang , X. She , D. Yang , Nano Energy 2019, 56, 813.

51
Z. Luo , Y. Zhang , C. Zhang , H. Tan , Z. Li , A. Abutaha , X. Wu , Q. Xiong , K. Khor , K. Hippalgaonkar , J. Xu , H. Hng , Q. Yan , Adv. Energy Mater. 2017, 7, 1601285.

52
L. Zhang , Y. Chen , G. Liu , Z. Li , S. Liu , S. Tiwari , O. Ola , B. Pang , N. Wang , Y. Zhu , ACS Omega 2022, 7, 12846.

53
N. Khan , N. Rashid , I. Ahmad , Zahidullah , R. Zairov , H. Rehman , M. Nazar , U. Jabeen , Int. J. Hydrogen Energy 2022, 47, 22340.

54
J. Yu , T. Zhang , Y. Sun , X. Li , X. Li , B. Wu , D. Men , Y. Li , ACS Appl. Mater. Interfaces 2020, 12, 12783.

55
X. Zeng , Y. Tan , L. Xia , Q. Zhang , G. Stucky , Chem. Commun. 2023, 59, 880.

56
X. Zeng , M. Jang , S. Choi , H.-S. Cho , C.-H. Kim , N. Myung , Y. Yin , Mater. Chem. Front. 2020, 4, 2307.

57
T. Li , T. Lu , H. Zhong , S. Xi , M. Zhang , H. Pang , J. Yang , L. Xu , Y. Tang , J. Xu , Adv. Energy Mater. 2022, 13, 2203274.

Options
Outlines

/