Boost the Utilization of Dense FeN4 Sites for High-Performance Proton Exchange Membrane Fuel Cells

  • Yanrong Li 1 ,
  • Shuhu Yin 1 ,
  • Long Chen 1 ,
  • Xiaoyang Cheng 1 ,
  • Chongtai Wang 2 ,
  • Yanxia Jiang , 1 ,
  • Shigang Sun , 1
Expand
  • 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China
  • 2. College of Chemistry and Chemical Engineering, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou 571158, China
yxjiang@xmu.edu.cn
sgsun@xmu.edu.cn

Received date: 20 Jan 2023

Revised date: 18 Feb 2023

Copyright

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Iron-nitrogen-carbon (Fe-N-C) catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site density (SD) and site utilization. Herein, we reported a melamine-assisted vapor deposition approach to overcome these hindrances. The melamine not only compensates for the loss of nitrogen caused by high-temperature pyrolysis but also effectively etches the carbon substrate, increasing the external surface area and mesoporous porosity of the carbon substrate. These can provide more useful area for subsequent vapor deposition on active sites. The prepared 0.20Mela-FeNC catalyst shows a fourfold higher SD value and site utilization than the FeNC without the treatment of melamine. As a result, 0.20Mela-FeNC catalyst exhibits a high ORR activity with a half-wave potential (E1/2) of 0.861 V and 12-fold higher ORR mass activity than the FeNC in acidic media. As the cathode in a H2-O2 PEMFCs, 0.20Mela-FeNC catalyst demonstrates a high peak power density of 1.30 W cm−2, outstripping most of the reported Fe-N-C catalysts. The developed melamine-assisted vapor deposition approach for boosting the SD and utilization of Fe-N-C catalysts offers a new insight into high-performance ORR electrocatalysts.

Cite this article

Yanrong Li , Shuhu Yin , Long Chen , Xiaoyang Cheng , Chongtai Wang , Yanxia Jiang , Shigang Sun . Boost the Utilization of Dense FeN4 Sites for High-Performance Proton Exchange Membrane Fuel Cells[J]. Energy & Environmental Materials, 2024 , 7(3) : 12611 . DOI: 10.1002/eem2.12611

1
M. K. Debe , Nature 2012, 486, 43.

2
U. A. Paulus , A. Wokaun , G. G. Scherer , T. J. Schmidt , V. Stamenkovic , N. M. Markovic , P. N. Ross , Electrochem. Acta 2002, 47, 3787.

3
C. Chen , Y. Kang , Z. Huo , Z. Zhu , W. Huang , H. L. Xin , J. D. Snyder , D. Li , J. A. Herron , M. Mavrikakis , M. Chi , K. L. More , Y. Li , N. M. Markovic , G. A. Somorjai , P. Yang , V. R. Stamenkovic , Science 2014, 343, 1339.

4
M. Lefèvre , E. Proietti , J.-P. Frédéric Jaouen , Science 2009, 324, 71.

5
W. Gang , K. L. More , C. M. Johnston , P. Zelenay , Science 2011, 332, 443.

6
X. Cheng , J. Yang , W. Yan , Y. Han , X. Qu , S. Yin , C. Chen , R. Ji , Y. Li , G. Li , G. Li , Y. Jiang , S.-G. Sun , Energ. Environ. Sci. 2021, 14, 5958.

7
E. Proietti , F. Jaouen , M. Lefèvre , N. Larouche , J. Tian , J. Herranz , J. Dodelet , Nat. Commun. 2011, 2, 416.

8
Y. C. Wang , Y. J. Lai , L. Song , Z. Y. Zhou , J. G. Liu , Q. Wang , X. D. Yang , C. Chen , W. Shi , Y. P. Zheng , M. Rauf , S. G. Sun , Angew. Chem. Int. Ed. 2015, 54, 9907.

9
J. Zou , C. Chen , Y. Chen , Y. Zhu , Q. Cheng , L. Zou , Z. Zou , H. Yang , ACS Catal. 2022, 12, 4517.

10
X. Xie , L. Shang , X. Xiong , R. Shi , T. Zhang , Adv. Energy Mater. 2021, 12, 2102688.

11
X. Xie , L. Peng , H. Yang , G. I. N. Waterhouse , L. Shang , T. Zhang , Adv. Mater. 2021, 33, e2101038.

12
F. Guo , M. Zhang , S. Yi , X. Li , R. Xin , M. Yang , B. Liu , H. Chen , H. Li , Y. Liu , Nano Res. Energy 2022, 1, e9120027.

13
A. Zitolo , V. Goellner , V. Armel , M.-T. Sougrati , T. Mineva , L. Stievano , E. Fonda , F. Jaouen , Nat. Mater. 2015, 14, 937.

14
X. Li , Z. Xiang , Nat. Commun. 2022, 13, 57.

15
X. Wan , X. Liu , Y. Li , R. Yu , L. Zheng , W. Yan , H. Wang , M. Xu , J. Shui , Nat. Catal. 2019, 2, 259.

16
Y. Chen , S. Ji , Y. Wang , J. Dong , W. Chen , Z. Li , R. Shen , L. Zheng , Z. Zhuang , D. Wang , Y. Li , Angew. Chem. Int. Ed. 2017, 56, 6937.

17
B. Y. Xia , Y. Yan , N. Li , H. B. Wu , X. W. Lou , X. Wang , Nat. Energy 2016, 1, 15006.

18
X. Lin , L. Shi , F. Liu , C. Jiang , J. Mao , C. Hu , D. Liu , Nano Res. 2021, 15, 1926.

19
S. Yin , G. Li , X. Qu , J. Zhang , L. Shen , Y. Li , C. Wang , Z. Yu , B. Lu , B. Xu , Y. Jiang , S. Sun , ACS Appl. Energy Mater. 2020, 3, 625.

20
M.-J. Xu , J. Liu , J.-J. Ge , C.-P. Liu , W. Xing , J. Electrochem. 2020, 26, 464.

21
J. Li , H. Zhang , W. Samarakoon , W. Shan , D. A. Cullen , S. Karakalos , M. Chen , D. Gu , K. L. More , G. Wang , Z. Feng , Z. Wang , G. Wu , Angew. Chem. Int. Ed. 2019, 58, 18971.

22
H. Zhang , S. Hwang , M. Wang , Z. Feng , S. Karakalos , L. Luo , Z. Qiao , X. Xie , C. Wang , D. Su , Y. Shao , G. Wu , J. Am. Chem. Soc. 2017, 139, 14143.

23
S. H. Yin , J. Yang , Y. Han , G. Li , L. Y. Wan , Y. H. Chen , C. Chen , X. M. Qu , Y. X. Jiang , S. G. Sun , Angew. Chem. Int. Ed. 2020, 59, 21976.

24
H. Lin , Y. Wu , J. Li , Y. Zhou , J. Electrochem. 2021, 27, 366.

25
Y.-Y. Lou , S.-H. Yin , J. Yang , L.-F. Ji , J.-Y. Fang , S.-Q. Zhang , M.-B. Feng , X. Yu , Y.-X. Jiang , S.-G. Sun , Chem. Eng. J. 2022, 446, 137060.

26
Q. Liu , X. Liu , L. Zheng , J. Shui , Angew. Chem. Int. Ed. 2018, 57, 1204.

27
H. Zhang , H. T. Chung , D. A. Cullen , S. Wagner , U. I. Kramm , K. L. More , P. Zelenay , G. Wu , Energ. Environ. Sci. 2019, 12, 2548.

28
G. Chen , P. Liu , Z. Liao , F. Sun , Y. He , H. Zhong , T. Zhang , E. Zschech , M. Chen , G. Wu , J. Zhang , X. Feng , Adv. Mater. 2020, 32, 1907399.

29
F. Jaouen , M. Lefevre , J.-P. Dodelet , M. Cai , J. Phys. Chem. B 2006, 110, 5553.

30
L. Jiao , R. Zhang , G. Wan , W. Yang , X. Wan , H. Zhou , J. Shui , S. Yu , H. Jiang , Nat. Commun. 2020, 11, 2831.

31
Y. Li , P. Zhang , L. Wan , Y. Zheng , X. Qu , H. Zhang , Y. Wang , K. Zaghib , J. Yuan , S. Sun , Y. Wang , Z. Zhou , S. Sun , Adv. Funct. Mater. 2021, 31, 2009645.

32
L. Wan , W. Chen , H. Xu , Y. Wang , J. Yuan , Z. Zhou , S. Sun , ACS Appl. Mater. Interfaces 2021, 13, 45661.

33
Y. Zhou , G. Chen , Q. Wang , D. Wang , X. Tao , T. Zhang , X. Feng , K. Müllen , Adv. Funct. Mater. 2021, 31, 2102420.

34
D. Xia , R. Wang , Y. Wei , L. Gan , F. Kang , Mater. Today Energy 2018, 9, 271.

35
C. Gumeci , N. Leonard , Y. Liu , S. McKinney , B. Halevi , S. C. Barton , J. Mater. Chem. A 2015, 3, 21494.

36
W. H. Lee , D. W. Lee , H. Kim , J. Electrochem. Soc. 2015, 162, F744.

37
D. H. Kim , S. Ringe , H. Kim , S. Kim , B. Kim , G. Bae , H. S. Oh , F. Jaouen , W. Kim , H. Kim , C. H. Choi , Nat. Commun. 1856, 2021, 12.

38
L. Jiao , J. Li , L. L. Richard , Q. Sun , T. Stracensky , E. Liu , M. T. Sougrati , Z. Zhao , F. Yang , S. Zhong , H. Xu , S. Mukerjee , Y. Huang , D. A. Cullen , J. H. Park , M. Ferrandon , D. J. Myers , F. Jaouen , Q. Jia , Nat. Mater. 2021, 20, 1385.

39
S.-H. Yin , S.-L. Yang , G. Li , G. Li , B.-W. Zhang , C.-T. Wang , M.-S. Chen , H.-G. Liao , J. Yang , Y.-X. Jiang , S.-G. Sun , Energ. Environ. Sci. 2022, 15, 3033.

40
X. Cheng , Y. Li , J. Zheng , S. Yin , C. Wang , X. Qu , J. Yang , Y. Jiang , S. Sun , Nano Energy 2022, 100, 107440.

41
A. Thomas , A. Fischer , F. Goettmann , M. Antonietti , J.-O. Müller , R. Schlögl , J. M. Carlsson , J. Mater. Chem. 2008, 18, 4893.

42
S. C. Yan , Z. S. Li , Z. G. Zou , Langmuir 2009, 25, 10397.

43
X. Zhang , X. Han , Z. Jiang , J. Xu , L. Chen , Y. Xue , A. Nie , Z. Xie , Q. Kuang , L. Zheng , Nano Energy 2020, 71, 104547.

44
C. Shu , Q. Tan , C. Deng , W. Du , Z. Gan , Y. Liu , C. Fan , H. Jin , W. Tang , Y. X. d, X. Yang , Y. Wu , Carbon Energy 2021,

DOI

45
X. Qu , Y. Han , Y. Chen , J. Lin , G. Li , J. Yang , Y. Jiang , S. Sun , Appl. Catal. Environ. 2021, 295, 120311.

46
D. Guo , R. Shibuya , C. Akiba , S. Saji , T. Kondo , J. Nakamura , Science 2016, 351, 361.

47
C. Hang , J. Zhang , J. Zhu , W. Li , Z. Kou , Y. Huang , Adv. Energy Mater. 2018, 8, 1703539.

48
L. Tao , M. Qiao , R. Jin , Y. Li , Z. Xiao , Y. Wang , N. Zhang , C. Xie , Q. He , D. Jiang , G. Yu , Y. Li , S. Wang , Angew. Chem. Int. Ed. 2019, 58, 1019.

49
D. Xia , X. Tang , S. Dai , R. Ge , A. Rykov , J. Wang , T. H. Huang , K. W. Wang , Y. Wei , K. Zhang , J. Li , L. Gan , F. Kang , Adv. Mater. 2023, 35, 2204474.

50
Q. Wang , Y. Ji , Y. Lei , Y. Wang , Y. Wang , Y. Li , S. Wang , ACS Energy Lett. 2018, 3, 1183.

51
Y. Jiang , L. Yang , T. Sun , J. Zhao , Z. Lyu , O. Zhuo , X. Wang , Q. Wu , J. Ma , Z. Hu , ACS Catal. 2015, 5, 6707.

52
Y. Zhang , Q. Wan , N. Yang , Small 2019, 15, 1903780.

53
H. Zhang , L. Osmieri , J. H. Park , H. T. Chung , D. A. Cullen , K. C. Neyerlin , D. J. Myers , P. Zelenay , Nat. Catal. 2022, 5, 455.

54
T. Kitahara , T. Konomi , H. Nakajima , J. Power Sources 2010, 195, 2202.

Options
Outlines

/