Ultra-Robust and High-Performance Rotational Triboelectric Nanogenerator by Bearing Charge Pumping
Received date: 30 Sep 2022
Revised date: 23 Nov 2022
Copyright
As an emerging technology to convert environmental high-entropy energy into electrical energy, triboelectric nanogenerator (TENG) has great demands for further enhancing the service lifetime and output performance in practical applications. Here, an ultra-robust and high-performance rotational triboelectric nanogenerator (R-TENG) by bearing charge pumping is proposed. The R-TENG composes of a pumping TENG (P-TENG), an output TENG (O-TENG), a voltage-multiplying circuit (VMC), and a buffer capacitor. The P-TENG is designed with freestanding mode based on a rolling ball bearing, which can also act as the rotating mechanical energy harvester. The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG, which can simultaneously realize ultralow mechanical wear and high output performance. The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min. Furthermore, the transferring charge of R-TENG can remain 95% during 15 days (6.4 × 106 cycles) continuous operation. This work presents a realizable method to further enhance the durability of TENG, which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
Xianpeng Fu , Yuhan Qin , Zhi Zhang , Guoxu Liu , Jie Cao , Beibei Fan , Zhaozheng Wang , Zheng Wang , Chi Zhang . Ultra-Robust and High-Performance Rotational Triboelectric Nanogenerator by Bearing Charge Pumping[J]. Energy & Environmental Materials, 2024 , 7(2) : 12566 . DOI: 10.1002/eem2.12566
1 |
Y. Qi , G. Liu , Y. Kuang , L. Wang , J. Zeng , Y. Lin , H. Zhou , M. Zhu , C. Zhang , Nano Energy 2022, 99, 107427.
|
2 |
W. Wang , A. Yu , Y. Wang , M. Jia , P. Guo , L. Ren , D. Guo , X. Pu , Z. L. Wang , J. Zhai , Adv. Sci. 2022, 1, 2202489.
|
3 |
R. Cheng , C. Ning , P. Chen , F. Sheng , C. Wei , Y. Zhang , X. Peng , K. Dong , Z. L. Wang , Adv. Energy Mater. 2022, 1, 2201532.
|
4 |
S. Hu , Z. Yuan , R. Li , Z. Cao , H. Zhou , Z. Wu , Z. L. Wang , Nano Lett. 2022, 22, 5584.
|
5 |
Y. Xie , Z. Zhang , H. Zhou , Z. Wang , Y. Lin , Y. Chen , Y. Lv , Y. Chen , C. Zhang , Adv. Mater. Interfaces 2022,
|
6 |
Z. Li , D. Yang , Z. Zhang , S. Lin , B. Cao , L. Wang , Z. L. Wang , F. Yin , Nano Energy 2022, 100, 107443.
|
7 |
Y. Lin , Y. Qi , J. Wang , G. Liu , Z. Wang , J. Zhao , Y. Lv , Z. Zhang , N. Tian , M. Wang , Y. Chen , C. Zhang , Sensors 2022,
|
8 |
L. Wang , Z. Fei , Y. Qi , C. Zhang , L. Zhao , Z. Jiang , R. Maeda , ACS Appl. Energy Mater. 2022, 9, 2200468.
|
9 |
F. R. Fan , Z. Q. Tian , Z. L. Wang , Nano Energy 2012, 1, 328.
|
10 |
B. Dudem , R. D. I. G. Dharmasena , R. Riaz , V. Vivekananthan , K. G. U. Wijayantha , P. Lugli , L. Petti , S. R. P. Silva , ACS Appl. Mater. Interfaces 2022, 14, 5328.
|
11 |
D. Tan , Q. Zeng , X. Wang , S. Yuan , Y. Luo , X. Zhang , L. Tan , C. Hu , G. Liu , Nano-Micro Lett. 2022,
|
12 |
Z. L. Wang , Adv. Energy Mater. 2020,
|
13 |
G. Liu , S. Xu , Y. Liu , Y. Gao , T. Tong , Y. Qi , C. Zhang , Adv. Funct. Mater. 2020, 30, 1909886.
|
14 |
L. Wang , W. Liu , Z. Yan , F. Wang , X. Wang , Adv. Funct. Mater. 2020, 1, 2007221.
|
15 |
C. Zhang , W. Tang , C. B. Han , F. R. Fan , Z. L. Wang , Adv. Mater. 2014, 26, 3580.
|
16 |
B. G. Park , C. Lee , Y. J. Kim , J. Park , H. Kim , Y. Jung , J. S. Ko , S. W. Kim , J. H. Lee , H. Cho , Nano Energy 2022, 100, 107433.
|
17 |
W. Sun , N. Luo , Y. Liu , H. Li , D. Wang , A. C. S. Appl , Mater. Interfaces 2022, 14, 10498.
|
18 |
M. Kim , C. Choi , J. P. Lee , J. Kim , C. Cha , Small 2022, 1, 2107316.
|
19 |
Y. Zi , H. Guo , Z. Wen , M. H. Yeh , C. Hu , Z. L. Wang , ACS Nano 2016, 10, 4797.
|
20 |
J. Zhao , G. Zhen , G. Liu , T. Bu , W. Liu , X. Fu , P. Zhang , C. Zhang , Z. L. Wang , Nano Energy 2019, 61, 111.
|
21 |
S. Xu , X. Fu , G. Liu , T. Tong , T. Bu , Z. Wang , C. Zhang , IScience 2021, 24, 135907.
|
22 |
X. Tang , W. Hou , Q. Zheng , L. Fang , R. Zhu , L. Zheng , Nano Energy 2022, 99, 107412.
|
23 |
X. Yu , J. Ge , Z. Wang , J. Wang , D. Zhao , Z. L. Wang , T. Cheng , Energ. Conver. Manage. 2022, 263, 115655.
|
24 |
Y. Wang , X. Li , X. Yu , J. Zhu , P. Shen , Z. L. Wang , T. Cheng , Nano Energy 2022, 99, 107389.
|
25 |
Q. Bai , X. W. Liao , Z. W. Chen , C. Z. Gan , H. X. Zou , K. X. Wei , Z. Gu , X. J. Zheng , Nano Energy 2022, 96, 107118.
|
26 |
W. Zhang , Y. Lu , T. Liu , J. Zhao , Y. Liu , Q. Fu , J. Mo , C. Cai , S. Nie , Small 2022, 18, 2200577.
|
27 |
G. H. Han , S. W. Kim , J. K. Kim , S. H. Lee , M. H. Jeong , H. C. Song , K. J. Choi , J. M. Baik , Nano 2022,
|
28 |
J. Cao , X. Fu , H. Zhu , Z. Qu , Y. Qi , Z. Zhang , Z. Zhang , G. Cheng , C. Zhang , J. Ding , Small Methods 2022, 6, 2200588.
|
29 |
W. Zhu , C. Hu , C. R. Bowen , Z. L. Wang , Y. Yang , Nano Energy 2022, 100, 107453.
|
30 |
Z. Yang , Y. Yang , F. Liu , B. Li , Y. Li , X. Liu , J. Chen , C. Wang , L. Ji , Z. L. Wang , J. Cheng , Nano Energy 2022, 98, 107264.
|
31 |
L. Zhou , Y. Gao , D. Liu , L. Liu , Z. Zhao , S. Li , W. Yuan , S. Cui , Z. L. Wang , J. Wang , Adv. Energy Mater. 2021, 2101958.
|
32 |
I. Kim , H. Roh , W. Choi , D. Kim , Nanoscale 2021, 13, 8837.
|
33 |
Y. Bai , L. Xu , S. Lin , J. Luo , H. Qin , K. Han , Z. L. Wang , Adv. Energy Mater. 2020,
|
34 |
L. Xu , T. Zhao , X. Dan , C. Zhang , Z. Lin , Nano Energy 2018, 49, 625.
|
35 |
H. Wang , L. Xu , Y. Bai , Z. L. Wang , Nat. Commun. 2020, 11, 4203.
|
36 |
K. Fan , D. Wei , Y. Zhang , P. Wang , K. Tao , R. Yang , Nano Energy 2021, 90, 106576.
|
37 |
Y. Luo , P. Chen , L. N. Y. Cao , Z. Xu , Y. Wu , G. He , T. Jiang , Z. L. Wang , Adv. Funct. Mater. 2022, 1, 2205710.
|
38 |
P. Chen , Y. Luo , R. Cheng , S. Shu , J. An , A. Berbille , T. Jiang , Z. L. Wang , Adv. Energy Mater. 2022, 1, 2201813.
|
/
〈 | 〉 |