Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector

  • Xuexia Chen ,
  • Dongwen Yang ,
  • Xun Yang ,
  • Qing Lou ,
  • Zhiyu Liu ,
  • Yancheng Chen ,
  • Chaofan Lv ,
  • Lin Dong ,
  • Chongxin Shan
Expand
  • Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
louqing1986@zzu.edu.cn
ldong@zzu.edu.cn
cxshan@zzu.edu.cn

Received date: 17 Jun 2022

Revised date: 07 Aug 2022

Copyright

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

Ultraviolet position-sensitive detectors (PSDs) are expected to undergo harsh environments, such as high temperatures, for a wide variety of applications in military, civilian, and aerospace. However, no report on relevant PSDs operating at high temperatures can be found up to now. Herein, we design a new 2D/3D graphitic carbon nitride (g-C3N4)/gallium nitride (GaN) hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD. The g-C3N4/GaN PSD exhibits a high position sensitivity of 355 mV mm-1, a rise/fall response time of 1.7/2.3 ms, and a nonlinearity of 0.5% at room temperature. The ultralow formation energy of -0.917 eV atom-1 has been obtained via the thermodynamic phase stability calculations, which endows g-C3N4 with robust stability against heat. By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C3N4, the g-C3N4/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm-1 and 1.4%, respectively, with high repeatability at a high temperature up to 700 K, outperforming most of the other counterparts and even commercial silicon-based devices. This work unveils the high-temperature PSD, and pioneers a new path to constructing g-C3N4-based harsh-environment-tolerant optoelectronic devices.

Cite this article

Xuexia Chen , Dongwen Yang , Xun Yang , Qing Lou , Zhiyu Liu , Yancheng Chen , Chaofan Lv , Lin Dong , Chongxin Shan . Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector[J]. Energy & Environmental Materials, 2024 , 7(1) : 12515 . DOI: 10.1002/eem2.12515

1
I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti, B. König, Science 2019, 365, 360.

2
L. Du, Q. Tian, X. Zheng, W. Guo, W. Liu, Y. Zhou, F. Shi, Q. Xu, Energy Environ. Mater. 2021, 5, 912.

3
T. Wang, C. Nie, Z. Ao, S. Wang, T. An, J. Mater. Chem. A 2020, 8, 485.

4
Y. Li, X. Liu, L. Tan, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K. W. K. Yeung, D. Zheng, X. Wang, S. Wu, Adv. Funct. Mater. 2019, 29, 1900946.

5
B. Jiang, H. Huang, W. Gong, X. Gu, T. Liu, J. Zhang, W. Qin, H. Chen, Y. Jin, Z. Liang, L. Jiang, Adv. Funct. Mater. 2021, 31, 2105045.

6
X. Wu, L. Tang, Y. Si, C. Ma, P. Zhang, J. Yu, Y. Liu, B. Ding, Energy Environ. Mater. 2022,

DOI

7
G. Algara-Siller, N. Severin, S. Y. Chong, T. Björkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, M. J. Bojdys, Angew. Chem. Int. Ed. 2014, 126, 7580.

8
Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai, D. Lei, M. Cai, M. Zhang, Energy Environ. Mater. 2021, 4, 638.

9
L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu, Z. Zhao, Q. Zhang, H. Ni, L. Chen, Mater. Today 2019, 22, 76.

10
J. Xu, M. Shalom, F. Piersimoni, M. Antonietti, D. Neher, T. J. K. Brenner, Adv. Opt. Mater. 2015, 3, 913.

11
J. Bian, C. Huang, R.-Q. Zhang, ChemSusChem 2016, 9, 2723.

12
C. Jia, L. Yang, Y. Zhang, X. Zhang, K. Xiao, J. Xu, J. Liu, A. C. S. Appl, Mater. Interfaces 2020, 12, 53571.

13
H. Y. Hoh, Y. Zhang, Y. L. Zhong, Q. Bao, Adv. Opt. Mater. 2021, 9, 2100146.

14
Z. Liu, C. Wang, Z. Zhu, Q. Lou, C. Shen, Y. Chen, J. Sun, Y. Ye, J. Zang, L. Dong, C.-X. Shan, Matter 2021, 4, 1625.

15
A. Dong, H. Wang, Ann. Phys. 2019, 531, 1800440.

16
L. Hao, Y. Liu, Z. Han, Z. Xu, J. Zhu, Nanoscale Res. Lett. 2017, 12, 562.

17
C. Hu, X. Wang, B. Song, Light Sci. Appl. 2020, 9, 88.

18
S. Qiao, K. Feng, Z. Li, G. Fu, S. Wang, J. Mater. Chem. C 2017, 5, 4915.

19
J. Liu, Z. Zhang, S. Qiao, G. Fu, S. Wang, C. Pan, Sci. Bull. 2020, 65, 477.

20
W. Wang, J. Lu, Z. Ni, Nano Res. 1889, 2020, 14.

21
Y. Hao, S. Guo, D. Weller, M. Zhang, C. Ding, K. Chai, L. Xie, R. Liu, Adv. Funct. Mater. 2019, 29, 1805967.

22
W.-H. Wang, R.-X. Du, X.-T. Guo, J. Jiang, W.-W. Zhao, Z.-H. Ni, X.-R. Wang, Y.-M. You, Z.-H. Ni, Light Sci. Appl. 2017, 6, e17113.

23
S. Qiao, B. Liang, J. Liu, G. Fu, S. Wang, J. Phys. D Appl. Phys. 2021, 54, 153003.

24
K. Li, Z. Jinhao, X. Yang, Y. Tian, C. Lin, P. Sun, Z. Zhang, Y. Chen, S. Chongxin, Phys. Status Solidi RRL 2021,

DOI

25
B. Song, X. Wang, B. Li, L. Zhang, Z. Lv, Y. Zhang, Y. Wang, J. Tang, P. Xu, B. Li, Y. Yang, Y. Sui, B. Song, Opt. Express 2016, 24, 23755.

26
A. R. M. Foisal, T. Nguyen, T. Dinh, T. K. Nguyen, P. Tanner, E. W. Streed, D. V. Dao, A. C. S. Appl, Mater. Interfaces 2019, 11, 40980.

27
J. Watson, G. Castro, J. Mater. Sci. Mater. Electron. 2015, 26, 9226.

28
H. So, J. Lim, D. G. Senesky, IEEE Sensors J. 2016, 16, 3633.

29
Z. Liu, Y. Zhi, S. Zhang, S. Li, Z. Yan, A. Gao, S. Zhang, D. Guo, J. Wang, Z. Wu, P. Li, W. Tang, Sci. China Technol. Sci. 2021, 64, 59.

30
K. Li, J. Zang, X. Yang, Y. Tian, C. Lin, P. Sun, Z. Zhang, Y. Chen, C. Shan, Phys. Status Solidi RRL 2021, 15, 2100347.

31
E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman, New J. Chem. 2002, 26, 508.

32
W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159.

33
R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D. S. Katzer, N. Nepal, B. P. Downey, D. A. Muller, H. G. Xing, D. J. Meyer, D. Jena, Nature 2018, 555, 183.

34
Z. Zheng, L. Zhang, W. Song, S. Feng, H. Xu, J. Sun, S. Yang, T. Chen, J. Wei, K. J. Chen, Nat. Electron. 2021, 4, 595.

35
G. Filippini, F. Longobardo, L. Forster, A. Criado, G. Di Carmine, L. Nasi, C. D’Agostino, M. Melchionna, P. Fornasiero, M. Prato, Sci. Adv. 2020, 6, eabc9923.

36
M. Majdoub, Z. Anfar, A. Amedlous, ACS Nano 2020, 14, 12390.

37
V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch, Nat. Commun. 2016, 7, 12165.

38
T. Xu, Z. Xia, H. Li, P. Niu, S. Wang, L. Li, Energy Environ. Mater. 2022,

DOI

39
D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, T. E. Haynes, J. Appl. Phys. 2000, 88, 4196.

40
X. J. Li, D. G. Zhao, D. S. Jiang, Z. S. Liu, P. Chen, J. J. Zhu, L. C. Le, J. Yang, X. G. He, S. M. Zhang, B. S. Zhang, J. P. Liu, H. Yang, J. Appl. Phys. 2014, 116, 163708.

41
R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi, T. Xu, J. Xu, Y. Tian, X. Li, J. Mater. Chem. C 2018, 6, 299.

42
R. Wang, H. Li, L. Zhang, Y.-J. Zeng, Z. Lv, J.-Q. Yang, J.-Y. Mao, Z. Wang, Y. Zhou, S.-T. Han, J. Mater. Chem. C 2019, 7, 10203.

43
J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 10145.

44
C. Hu, X. Wang, P. Miao, L. Zhang, B. Song, W. Liu, Z. Lv, Y. Zhang, Y. Sui, J. Tang, Y. Yang, B. Song, P. Xu, A. C. S. Appl, Mater. Interfaces 2017, 9, 18362.

45
S. Q. Xiao, H. Wang, C. Q. Yu, Y. X. Xia, J. J. Lu, Q. Y. Jin, Z. H. Wang, New J. Phys. 2008, 10, 033018.

46
X. Wang, X. Zhao, C. Hu, Y. Zhang, B. Song, L. Zhang, W. Liu, Z. Lv, Y. Zhang, J. Tang, Y. Sui, B. Song, Appl. Phys. Lett. 2016, 109, 023502.

47
X. Huang, C. Mei, Z. Gan, P. Zhou, H. Wang, Appl. Phys. Lett. 2017, 110, 121103.

48
C. Wang, K. Jin, R. Zhao, H. Lu, H. Guo, C. Ge, M. He, C. Wang, G. Yang, Appl. Phys. Lett. 2011, 98, 181101.

49
C. Q. Yu, H. Wang, Y. X. Xia, Appl. Phys. Lett. 2009, 95, 263506.

50
R. Cong, S. Qiao, J. Liu, J. Mi, W. Yu, B. Liang, G. Fu, C. Pan, S. Wang, Adv. Sci. 2018, 5, 1700502.

51
S. Liu, X. Xie, H. Wang, Opt. Express 2014, 22, 11627.

52
M. Javadi, M. Gholami, H. Torbatiyan, Y. Abdi, Appl. Phys. Lett. 2018, 112, 113302.

53
Z. Zhang, S. Qiao, Y. Wang, Z. Li, S. Wang, G. Fu, IEEE Trans. Electron. Devices 2019, 66, 3887.

54
S. Qiao, B. Zhang, K. Feng, R. Cong, W. Yu, G. Fu, S. Wang, ACS Appl. Mater. Interfaces 2017, 9, 18377.

55
H. Nguyen, A. Riduan Md Foisal, T. Nguyen, T. Dinh, E. W. Streed, N.-T. Nguyen, D. V. Dao, J. Phys. D Appl. Phys. 2021, 54, 265101.

56
E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes, Sens. Actuators A 1996, 51, 135.

57
J. Henry, J. Livingstone, Adv. Mater. 2001, 13, 1023.

58
N. Tabatabaie, M.-H. Meynadier, R. E. Nahory, J. P. Harbison, L. T. Florez, Appl. Phys. Lett. 1989, 55, 792.

59
C. Qi, H. Wang, Appl. Phys. Lett. 2010,

DOI

60
R. Martins, E. Fortunato, Rev. Sci. Instrum. 1995, 66, 2927.

61
Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, L. Zhang, X. Li, C. Shan, Adv. Mater. 2021, 33, 2001367.

62
H. Nakayama, P. Hacke, M. Khan, Jpn. J. Appl. Phys. 1996, 35, 282.

63
M. Siva Pratap Reddy, A. Bengi, V. Rajagopal Reddy, J.-S. Jang, Superlattice. Microst. 2015, 86, 157.

64
R. Feng, L. Hu, Y. Zhang, M. Zaheer, Z.-J. Qiu, C. Cong, Q. Nie, Y. Qin, R. Liu, Nanophotonics 2018, 7, 1563.

65
T.-H. Nguyen, T. Nguyen, A. R. M. Foisal, T. A. Pham, T. Dinh, H.-Q. Nguyen, E. W. Streed, T.-H. Vu, J. Fastier-Wooller, P. G. Duran, V. T. Dau, N.-T. Nguyen, D. V. Dao, ACS Appl. Electron. Mater. 2022, 4, 768.

66
A. R. M. Foisal, A. Qamar, T. Nguyen, T. Dinh, H. P. Phan, H. Nguyen, P. G. Duran, E. W. Streed, D. V. Dao, Nano Energy 2021, 79, 105494.

67
F. Yang, Z. Zheng, Y. He, P. Liu, G. Yang, Adv. Funct. Mater. 2021, 31, 2104254.

68
M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433.

69
L. F. Thompson, An Introduction to Lithography, American Chemical Society, Washington, DC, USA 1983.

70
P. J. Kelly, R. D. Arnell, Vacuum 2000, 56, 159.

Options
Outlines

/