Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector
Received date: 17 Jun 2022
Revised date: 07 Aug 2022
Copyright
Ultraviolet position-sensitive detectors (PSDs) are expected to undergo harsh environments, such as high temperatures, for a wide variety of applications in military, civilian, and aerospace. However, no report on relevant PSDs operating at high temperatures can be found up to now. Herein, we design a new 2D/3D graphitic carbon nitride (g-C3N4)/gallium nitride (GaN) hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD. The g-C3N4/GaN PSD exhibits a high position sensitivity of 355 mV mm-1, a rise/fall response time of 1.7/2.3 ms, and a nonlinearity of 0.5% at room temperature. The ultralow formation energy of -0.917 eV atom-1 has been obtained via the thermodynamic phase stability calculations, which endows g-C3N4 with robust stability against heat. By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C3N4, the g-C3N4/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm-1 and 1.4%, respectively, with high repeatability at a high temperature up to 700 K, outperforming most of the other counterparts and even commercial silicon-based devices. This work unveils the high-temperature PSD, and pioneers a new path to constructing g-C3N4-based harsh-environment-tolerant optoelectronic devices.
Xuexia Chen , Dongwen Yang , Xun Yang , Qing Lou , Zhiyu Liu , Yancheng Chen , Chaofan Lv , Lin Dong , Chongxin Shan . Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector[J]. Energy & Environmental Materials, 2024 , 7(1) : 12515 . DOI: 10.1002/eem2.12515
1 |
I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti, B. König, Science 2019, 365, 360.
|
2 |
L. Du, Q. Tian, X. Zheng, W. Guo, W. Liu, Y. Zhou, F. Shi, Q. Xu, Energy Environ. Mater. 2021, 5, 912.
|
3 |
T. Wang, C. Nie, Z. Ao, S. Wang, T. An, J. Mater. Chem. A 2020, 8, 485.
|
4 |
Y. Li, X. Liu, L. Tan, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K. W. K. Yeung, D. Zheng, X. Wang, S. Wu, Adv. Funct. Mater. 2019, 29, 1900946.
|
5 |
B. Jiang, H. Huang, W. Gong, X. Gu, T. Liu, J. Zhang, W. Qin, H. Chen, Y. Jin, Z. Liang, L. Jiang, Adv. Funct. Mater. 2021, 31, 2105045.
|
6 |
X. Wu, L. Tang, Y. Si, C. Ma, P. Zhang, J. Yu, Y. Liu, B. Ding, Energy Environ. Mater. 2022,
|
7 |
G. Algara-Siller, N. Severin, S. Y. Chong, T. Björkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, M. J. Bojdys, Angew. Chem. Int. Ed. 2014, 126, 7580.
|
8 |
Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai, D. Lei, M. Cai, M. Zhang, Energy Environ. Mater. 2021, 4, 638.
|
9 |
L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu, Z. Zhao, Q. Zhang, H. Ni, L. Chen, Mater. Today 2019, 22, 76.
|
10 |
J. Xu, M. Shalom, F. Piersimoni, M. Antonietti, D. Neher, T. J. K. Brenner, Adv. Opt. Mater. 2015, 3, 913.
|
11 |
J. Bian, C. Huang, R.-Q. Zhang, ChemSusChem 2016, 9, 2723.
|
12 |
C. Jia, L. Yang, Y. Zhang, X. Zhang, K. Xiao, J. Xu, J. Liu, A. C. S. Appl, Mater. Interfaces 2020, 12, 53571.
|
13 |
H. Y. Hoh, Y. Zhang, Y. L. Zhong, Q. Bao, Adv. Opt. Mater. 2021, 9, 2100146.
|
14 |
Z. Liu, C. Wang, Z. Zhu, Q. Lou, C. Shen, Y. Chen, J. Sun, Y. Ye, J. Zang, L. Dong, C.-X. Shan, Matter 2021, 4, 1625.
|
15 |
A. Dong, H. Wang, Ann. Phys. 2019, 531, 1800440.
|
16 |
L. Hao, Y. Liu, Z. Han, Z. Xu, J. Zhu, Nanoscale Res. Lett. 2017, 12, 562.
|
17 |
C. Hu, X. Wang, B. Song, Light Sci. Appl. 2020, 9, 88.
|
18 |
S. Qiao, K. Feng, Z. Li, G. Fu, S. Wang, J. Mater. Chem. C 2017, 5, 4915.
|
19 |
J. Liu, Z. Zhang, S. Qiao, G. Fu, S. Wang, C. Pan, Sci. Bull. 2020, 65, 477.
|
20 |
W. Wang, J. Lu, Z. Ni, Nano Res. 1889, 2020, 14.
|
21 |
Y. Hao, S. Guo, D. Weller, M. Zhang, C. Ding, K. Chai, L. Xie, R. Liu, Adv. Funct. Mater. 2019, 29, 1805967.
|
22 |
W.-H. Wang, R.-X. Du, X.-T. Guo, J. Jiang, W.-W. Zhao, Z.-H. Ni, X.-R. Wang, Y.-M. You, Z.-H. Ni, Light Sci. Appl. 2017, 6, e17113.
|
23 |
S. Qiao, B. Liang, J. Liu, G. Fu, S. Wang, J. Phys. D Appl. Phys. 2021, 54, 153003.
|
24 |
K. Li, Z. Jinhao, X. Yang, Y. Tian, C. Lin, P. Sun, Z. Zhang, Y. Chen, S. Chongxin, Phys. Status Solidi RRL 2021,
|
25 |
B. Song, X. Wang, B. Li, L. Zhang, Z. Lv, Y. Zhang, Y. Wang, J. Tang, P. Xu, B. Li, Y. Yang, Y. Sui, B. Song, Opt. Express 2016, 24, 23755.
|
26 |
A. R. M. Foisal, T. Nguyen, T. Dinh, T. K. Nguyen, P. Tanner, E. W. Streed, D. V. Dao, A. C. S. Appl, Mater. Interfaces 2019, 11, 40980.
|
27 |
J. Watson, G. Castro, J. Mater. Sci. Mater. Electron. 2015, 26, 9226.
|
28 |
H. So, J. Lim, D. G. Senesky, IEEE Sensors J. 2016, 16, 3633.
|
29 |
Z. Liu, Y. Zhi, S. Zhang, S. Li, Z. Yan, A. Gao, S. Zhang, D. Guo, J. Wang, Z. Wu, P. Li, W. Tang, Sci. China Technol. Sci. 2021, 64, 59.
|
30 |
K. Li, J. Zang, X. Yang, Y. Tian, C. Lin, P. Sun, Z. Zhang, Y. Chen, C. Shan, Phys. Status Solidi RRL 2021, 15, 2100347.
|
31 |
E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman, New J. Chem. 2002, 26, 508.
|
32 |
W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159.
|
33 |
R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D. S. Katzer, N. Nepal, B. P. Downey, D. A. Muller, H. G. Xing, D. J. Meyer, D. Jena, Nature 2018, 555, 183.
|
34 |
Z. Zheng, L. Zhang, W. Song, S. Feng, H. Xu, J. Sun, S. Yang, T. Chen, J. Wei, K. J. Chen, Nat. Electron. 2021, 4, 595.
|
35 |
G. Filippini, F. Longobardo, L. Forster, A. Criado, G. Di Carmine, L. Nasi, C. D’Agostino, M. Melchionna, P. Fornasiero, M. Prato, Sci. Adv. 2020, 6, eabc9923.
|
36 |
M. Majdoub, Z. Anfar, A. Amedlous, ACS Nano 2020, 14, 12390.
|
37 |
V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch, Nat. Commun. 2016, 7, 12165.
|
38 |
T. Xu, Z. Xia, H. Li, P. Niu, S. Wang, L. Li, Energy Environ. Mater. 2022,
|
39 |
D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, T. E. Haynes, J. Appl. Phys. 2000, 88, 4196.
|
40 |
X. J. Li, D. G. Zhao, D. S. Jiang, Z. S. Liu, P. Chen, J. J. Zhu, L. C. Le, J. Yang, X. G. He, S. M. Zhang, B. S. Zhang, J. P. Liu, H. Yang, J. Appl. Phys. 2014, 116, 163708.
|
41 |
R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi, T. Xu, J. Xu, Y. Tian, X. Li, J. Mater. Chem. C 2018, 6, 299.
|
42 |
R. Wang, H. Li, L. Zhang, Y.-J. Zeng, Z. Lv, J.-Q. Yang, J.-Y. Mao, Z. Wang, Y. Zhou, S.-T. Han, J. Mater. Chem. C 2019, 7, 10203.
|
43 |
J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 10145.
|
44 |
C. Hu, X. Wang, P. Miao, L. Zhang, B. Song, W. Liu, Z. Lv, Y. Zhang, Y. Sui, J. Tang, Y. Yang, B. Song, P. Xu, A. C. S. Appl, Mater. Interfaces 2017, 9, 18362.
|
45 |
S. Q. Xiao, H. Wang, C. Q. Yu, Y. X. Xia, J. J. Lu, Q. Y. Jin, Z. H. Wang, New J. Phys. 2008, 10, 033018.
|
46 |
X. Wang, X. Zhao, C. Hu, Y. Zhang, B. Song, L. Zhang, W. Liu, Z. Lv, Y. Zhang, J. Tang, Y. Sui, B. Song, Appl. Phys. Lett. 2016, 109, 023502.
|
47 |
X. Huang, C. Mei, Z. Gan, P. Zhou, H. Wang, Appl. Phys. Lett. 2017, 110, 121103.
|
48 |
C. Wang, K. Jin, R. Zhao, H. Lu, H. Guo, C. Ge, M. He, C. Wang, G. Yang, Appl. Phys. Lett. 2011, 98, 181101.
|
49 |
C. Q. Yu, H. Wang, Y. X. Xia, Appl. Phys. Lett. 2009, 95, 263506.
|
50 |
R. Cong, S. Qiao, J. Liu, J. Mi, W. Yu, B. Liang, G. Fu, C. Pan, S. Wang, Adv. Sci. 2018, 5, 1700502.
|
51 |
S. Liu, X. Xie, H. Wang, Opt. Express 2014, 22, 11627.
|
52 |
M. Javadi, M. Gholami, H. Torbatiyan, Y. Abdi, Appl. Phys. Lett. 2018, 112, 113302.
|
53 |
Z. Zhang, S. Qiao, Y. Wang, Z. Li, S. Wang, G. Fu, IEEE Trans. Electron. Devices 2019, 66, 3887.
|
54 |
S. Qiao, B. Zhang, K. Feng, R. Cong, W. Yu, G. Fu, S. Wang, ACS Appl. Mater. Interfaces 2017, 9, 18377.
|
55 |
H. Nguyen, A. Riduan Md Foisal, T. Nguyen, T. Dinh, E. W. Streed, N.-T. Nguyen, D. V. Dao, J. Phys. D Appl. Phys. 2021, 54, 265101.
|
56 |
E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes, Sens. Actuators A 1996, 51, 135.
|
57 |
J. Henry, J. Livingstone, Adv. Mater. 2001, 13, 1023.
|
58 |
N. Tabatabaie, M.-H. Meynadier, R. E. Nahory, J. P. Harbison, L. T. Florez, Appl. Phys. Lett. 1989, 55, 792.
|
59 |
C. Qi, H. Wang, Appl. Phys. Lett. 2010,
|
60 |
R. Martins, E. Fortunato, Rev. Sci. Instrum. 1995, 66, 2927.
|
61 |
Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, L. Zhang, X. Li, C. Shan, Adv. Mater. 2021, 33, 2001367.
|
62 |
H. Nakayama, P. Hacke, M. Khan, Jpn. J. Appl. Phys. 1996, 35, 282.
|
63 |
M. Siva Pratap Reddy, A. Bengi, V. Rajagopal Reddy, J.-S. Jang, Superlattice. Microst. 2015, 86, 157.
|
64 |
R. Feng, L. Hu, Y. Zhang, M. Zaheer, Z.-J. Qiu, C. Cong, Q. Nie, Y. Qin, R. Liu, Nanophotonics 2018, 7, 1563.
|
65 |
T.-H. Nguyen, T. Nguyen, A. R. M. Foisal, T. A. Pham, T. Dinh, H.-Q. Nguyen, E. W. Streed, T.-H. Vu, J. Fastier-Wooller, P. G. Duran, V. T. Dau, N.-T. Nguyen, D. V. Dao, ACS Appl. Electron. Mater. 2022, 4, 768.
|
66 |
A. R. M. Foisal, A. Qamar, T. Nguyen, T. Dinh, H. P. Phan, H. Nguyen, P. G. Duran, E. W. Streed, D. V. Dao, Nano Energy 2021, 79, 105494.
|
67 |
F. Yang, Z. Zheng, Y. He, P. Liu, G. Yang, Adv. Funct. Mater. 2021, 31, 2104254.
|
68 |
M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433.
|
69 |
L. F. Thompson, An Introduction to Lithography, American Chemical Society, Washington, DC, USA 1983.
|
70 |
P. J. Kelly, R. D. Arnell, Vacuum 2000, 56, 159.
|
/
〈 | 〉 |