Solvation Effects on the Dielectric Constant of 1 M LiPF6 in Ethylene Carbonate: Ethyl Methyl Carbonate 3:7

  • Julian Self 1,2,3 ,
  • Nathan T. Hahn 4 ,
  • Kristin A. Persson , 2,3
Expand
  • 1. Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
  • 2. Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
  • 3. Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • 4. Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
kapersson@lbl.gov

Received date: 24 Jun 2022

Revised date: 26 Jul 2022

Copyright

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Abstract

We report the dielectric constant of 1 M LiPF6 in EC:EMC 3:7 w/w (ethylene carbonate/ethyl methyl carbonate) in addition to neat EC:EMC 3:7 w/w. Using three Debye relaxations, the static permittivity value, or dielectric constant, is extrapolated to 18.5, which is compared to 18.7 for the neat solvent mixture. The EC solvent is found to strongly coordinate with the Li+ cations of the salt, which results in a loss of dielectric contribution to the electrolyte. However, the small amplitude and large uncertainty in relaxation frequency for EMC cloud definitive identification of the Li+ solvation shell. Importantly, the loss of the free EC permittivity contribution due to Li+ solvation is almost completely balanced by the positive contribution of the associated LiPF6 salt, demonstrating that a significant quantity of dipolar ion pairs exists in 1 M LiPF6 in EC:EMC 3:7.

Cite this article

Julian Self , Nathan T. Hahn , Kristin A. Persson . Solvation Effects on the Dielectric Constant of 1 M LiPF6 in Ethylene Carbonate: Ethyl Methyl Carbonate 3:7[J]. Energy & Environmental Materials, 2024 , 7(1) : 12494 . DOI: 10.1002/eem2.12494

1
K. Xu, Chem. Rev. 2004, 104, 4303.

2
K. Xu, Chem. Rev. 2014, 114, 11503.

3
J. Self, N. T. Hahn, K. D. Fong, S. A. McClary, K. R. Zavadil, K. A. Persson, J. Phys. Chem. Lett. 2020, 11, 2046.

4
J. Vincze, M. Valiskó, D. Boda, J. Chem. Phys. 2010, 133, 154507.

5
I. Y. Shilov, A. K. Lyashchenko, J. Phys. Chem. B 2015, 119, 10087.

6
B. Maribo-Mogensen, G. M. Kontogeorgis, K. Thomsen, Ind. Eng. Chem. Res. 2012, 51, 5353.

7
J.-P. Simonin, O. Bernard, L. Blum, J. Phys. Chem. B 1998, 102, 4411.

8
K. L. Gering, Electrochim. Acta 2017, 225, 175.

9
Y. Marcus, G. Hefter, Chem. Rev. 2006, 106, 4585.

10
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.

11
E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032.

12
S. A. Delp, O. Borodin, M. Olguin, C. G. Eisner, J. L. Allen, T. R. Jow, Electrochim. Acta 2016, 209, 498.

13
P. Jankowski, W. Wieczorek, P. Johansson, J. Mol. Model. 2017, 23, 6.

14
R. L. Wang, C. Buhrmester, J. R. Dahn, J. Electrochem. Soc. 2006, 153, A445.

15
X. Qu, A. Jain, N. N. Rajput, L. Cheng, Y. Zhang, S. P. Ong, M. Brafman, E. Maginn, L. A. Curtiss, K. A. Persson, Comput. Mater. Sci. 2015, 103, 56.

16
D. S. Hall, J. Self, J. R. Dahn, J. Phys. Chem. C 2015, 119, 22322.

17
E. R. Logan, E. M. Tonita, K. L. Gering, L. Ma, M. K. G. Bauer, J. Li, L. Y. Beaulieu, J. R. Dahn, J. Electrochem. Soc. 2018, 165, A705.

18
N. Yao, X. Chen, X. Shen, R. Zhang, Z. Fu, X. Ma, X. Zhang, B. Li, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 21473.

19
S. Hwang, D.-H. Kim, J. H. Shin, J. E. Jang, K. H. Ahn, C. Lee, H. Lee, J. Phys. Chem. C 2018, 122, 19438.

20
T. Yamaguchi, M. Hayakawa, T. Matsuoka, S. Koda, J. Phys. Chem. B 2009, 113, 11988.

21
M. Delsignore, H. Farber, S. Petrucci, J. Phys. Chem. 1985, 89, 4968.

22
H. Lee, S. Hwang, M. Kim, K. Kwak, J. Lee, Y.-K. Han, H. Lee, J. Phys. Chem. Lett. 2020, 11, 10382.

23
M. Ue, J. Electrochem. Soc. 1995, 142, 2577.

24
A. J. Ringsby, K. D. Fong, J. Self, H. K. Bergstrom, B. D. McCloskey, K. A. Persson, J. Electrochem. Soc. 2021, 168, 80501.

25
M. Nie, D. P. Abraham, D. M. Seo, Y. Chen, A. Bose, B. L. Lucht, J. Phys. Chem. C 2013, 117, 25381.

26
K. Kondo, M. Sano, A. Hiwara, T. Omi, M. Fujita, A. Kuwae, M. Iida, K. Mogi, H. Yokoyama, J. Phys. Chem. B 2000, 104, 5040.

27
D. M. Seo, S. Reininger, M. Kutcher, K. Redmond, W. B. Euler, B. L. Lucht, J. Phys. Chem. C 2015, 119, 14038.

28
X. Bogle, R. Vazquez, S. Greenbaum, A. v. W. Cresce, K. Xu, J. Phys. Chem. Lett. 2013, 4, 1664.

29
M. Castriota, E. Cazzanelli, I. Nicotera, L. Coppola, C. Oliviero, G. A. Ranieri, J. Chem. Phys. 2003, 118, 5537.

30
M. Morita, Y. Asai, N. Yoshimoto, M. Ishikawa, J. Chem. Soc. Faraday Trans. 1998, 94, 3451.

31
B. Jiang, V. Ponnuchamy, Y. Shen, X. Yang, K. Yuan, V. Vetere, S. Mossa, I. Skarmoutsos, Y. Zhang, J. Zheng, J. Phys. Chem. Lett. 2016, 7, 3554.

32
I. Skarmoutsos, V. Ponnuchamy, V. Vetere, S. Mossa, J. Phys. Chem. C 2015, 119, 4502.

33
J. Self, K. D. Fong, K. A. Persson, ACS Energy Lett. 2019, 4, 2843.

34
Y. Zhang, M. Su, X. Yu, Y. Zhou, J. Wang, R. Cao, W. Xu, C. Wang, D. R. Baer, O. Borodin, K. Xu, Y. Wang, X.-L. Wang, Z. Xu, F. Wang, Z. Zhu, Anal. Chem. 2018, 90, 3341.

35
O. Borodin, M. Olguin, P. Ganesh, P. R. C. Kent, J. L. Allen, W. A. Henderson, Phys. Chem. Chem. Phys. 2016, 18, 164.

36
R. Buchner, G. Hefter, Phys. Chem. Chem. Phys. 2009, 11, 8984.

37
F. Kremer, A. Schönhals (Eds), Broadband Dielectric Spectroscopy, Springer, Berlin, Heidelberg 2003.

38
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ·I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors , A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, Y. Vázquez-Baeza, Nat. Methods 2020, 17, 261.

39
R. Buchner, G. T. Hefter, P. M. May, J. Phys. Chem. A 1999, 103 (1), 1.

40
R. Payne, I. E. Theodorou, J. Phys. Chem. 1972, 76, 2892.

41
D. Saar, J. Brauner, H. Farber, S. Petrucci, J. Phys. Chem. 1978, 82, 2531.

42
M. W. Evans, M. N. Afsar, Chem. Phys. Lett. 1977, 52, 6.

43
E. R. Logan, E. M. Tonita, K. L. Gering, J. Li, X. Ma, L. Y. Beaulieu, J. R. Dahn, J. Electrochem. Soc. 2018, 165, A21.

44
K. D. Fulfer, D. G. Kuroda, J. Phys. Chem. C 2016, 120, 24011.

45
A. von Wald Cresce, M. Gobet, O. Borodin, J. Peng, S. M. Russell, E. Wikner, A. Fu, L. Hu, H.-S. Lee, Z. Zhang, X.-Q. Yang, S. Greenbaum, K. Amine, K. Xu, J. Phys. Chem. C 2015, 119, 27255.

Options
Outlines

/