Enhancement of Cd-Free All-Dry-Processed Cu(In1-x,Gax)Se2 Thin-Film Solar Cells by Simultaneous Adoption of an Enlarged Bandgap Absorber and Tunable Bandgap Zn1-xMgxO Buffer

Joo Hyung Park , Yonghee Jo , Ara Cho , Inyoung Jeong , Jin Gi An , Kihwan Kim , Seung Kyu Ahn , Donghyeop Shin , Jun-Sik Cho

Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12796

PDF
Energy & Environmental Materials ›› 2025, Vol. 8 ›› Issue (1) : e12796 DOI: 10.1002/eem2.12796
RESEARCH ARTICLE

Enhancement of Cd-Free All-Dry-Processed Cu(In1-x,Gax)Se2 Thin-Film Solar Cells by Simultaneous Adoption of an Enlarged Bandgap Absorber and Tunable Bandgap Zn1-xMgxO Buffer

Author information +
History +
PDF

Abstract

Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance, as in a wide bandgap Zn1-xMgxO (ZMO) to replace the CdS buffer in Cu(In1-x,Gax)Se2 (CIGSe) thin-film solar cell structure. ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content, which can be helpful in attaining a suitable conduction band offset. Hence, compared to the fixed and limited bandgap of a CdS buffer, a ZMO buffer may provide advantages in Voc and Jsc based on its controllable and wide bandgap, even with a relatively wider bandgap CIGSe thin-film solar cell. In addition, to solve problems with the defect sites at the ZMO/CIGSe junction interface, a few-nanometer ZnS layer is employed for heterojunction interface passivation, forming a ZMO/ZnS buffer structure by atomic layer deposition (ALD). Finally, a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap (1.25 eV) and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%, which exhibited a higher performance than the CdS counterpart.

Keywords

atomic layer deposition / conduction band offset engineering / Cu(In 1-x,Ga x)Se 2 solar cell / ZnMgO buffer / ZnS heterojunction interface passivation

Cite this article

Download citation ▾
Joo Hyung Park, Yonghee Jo, Ara Cho, Inyoung Jeong, Jin Gi An, Kihwan Kim, Seung Kyu Ahn, Donghyeop Shin, Jun-Sik Cho. Enhancement of Cd-Free All-Dry-Processed Cu(In1-x,Gax)Se2 Thin-Film Solar Cells by Simultaneous Adoption of an Enlarged Bandgap Absorber and Tunable Bandgap Zn1-xMgxO Buffer. Energy & Environmental Materials, 2025, 8(1): e12796 DOI:10.1002/eem2.12796

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Severino, N. Bednar, N. Adamovic, J. Mater. Sci. Chem. Eng. 2018, 6, 147.

[2]

G.-R. Uhm, S. Y. Jang, Y. H. Jeon, H. K. Yoon, H. Seo, RSC Adv. 2014, 4, 28111.

[3]

T. Nakada, M. Hongo, E. Hayashi, Thin Solid Films 2003, 431-432, 242.

[4]

D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, A. N. Tiwari, Thin Solid Films 2005, 480, 118.

[5]

F. Larsson, O. Donzel-Gargand, J. Keller, M. Edoff, T. Törndahl, Sol. Energy Mater. Sol. Cells 2018, 183, 8.

[6]

T. Schnabel, M. Seboui, A. Bauer, L. Choubrac, L. Arzel, S. Harel, N. Barreau, E. Ahlswede, RSC Adv. 2017, 7, 40105.

[7]

T. Nakada, M. Mizutani, Y. Hagiwara, A. Kunioka, Sol. Energy Mater. Sol. Cells 2001, 67, 255.

[8]

T. Nakada, M. Mizutani, Jpn. J. Appl. Phys. 2002, 41, L165.

[9]

M. Buffière, N. Barreau, L. Arzel, P. Zabierowski, J. Kessler, Prog. Photovolt. Res. Appl. 2014, 23, 462.

[10]

S. Sharbati, J. R. Sites, IEEE J. Photovolt. 2014, 4, 697.

[11]

M. A. Bhide, C. J. Carmalt, C. E. Knapp, J. Mater. Chem. C 2020, 8, 5501.

[12]

T. Terasako, Y. Ochi, M. Yagi, J. Nomoto, T. Yamamoto, Thin Solid Films 2018, 663, 79.

[13]

H. Daisuke, M. Nobuki, S. Noriyuki, K. Takuya, S. Hiroki, C. Jakapan, T. Zeguo, M. Takashi, Jpn. J. Appl. Phys. 2014, 53, 106502.

[14]

T. Minemoto, S. Harada, H. Takakura, Curr. Appl. Phys. 2012, 12, 171.

[15]

D. Hariskos, B. Fuchs, R. Meener, N. Naghavi, C. Hubert, D. Lincot, M. Powalla, Prog. Photovolt. Res. Appl. 2009, 17, 479.

[16]

S. Shi, Z. He, Y. Fan, Y. Liu, Y. Zhang, S. Cheng, S. Xu, Y. Zhang, F. Liu, Z. Zhou, A. Tang, Y. Sun, W. Liu, Mater. Res. Express 2019, 6, 86431.

[17]

A. Wachau, J. Schulte, P. Agoston, F. Hübler, A. Steigert, R. Klenk, F. Hergert, H. Eschrich, V. Probst, Prog. Photovolt. Res. Appl. 2017, 25, 696.

[18]

Y. H. Shin, Y. Kim, J. Korean Vac. Soc. 2013, 22, 7.

[19]

Y. H. Shin, Y. Kim, J. Korean Phys. Soc. 2012, 61, 594.

[20]

C.-S. Lee, Y. M. Shin, B. T. Ahn, ECS Trans. 2011, 41, 213.

[21]

C.-S. Lee, S. Kim, Y.-M. Shin, B. G. Park, B. T. Ahn, H. S. Kwon, RSC Adv. 2014, 4, 36784.

[22]

S. Kim, C.-S. Lee, S. Kim, R. B. V. Chalapathy, E. A Al-Ammar, B. T. Ahn, Phys. Chem. Chem. Phys. 2015, 17, 19222.

[23]

T. Törndahl, C. Platzer-Björkman, J. Kessler, M. Edoff, Prog. Photovolt. Res. Appl. 2007, 15, 225.

[24]

C. Platzer-Björkman, T. Törndahl, A. Hultqvist, J. Kessler, M. Edoff, Thin Solid Films 2007, 515, 6024.

[25]

J. Pettersson, C. Platzer-Björkman, M. Edoff, Prog. Photovolt. Res. Appl. 2009, 17, 460.

[26]

T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, Appl. Phys. Lett. 2004, 84, 5359.

[27]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Appl. Phys. Lett. 1998, 72, 2466.

[28]

O. E. Taurian, M. Springborg, N. E. Christensent, Solid State Commun. 1985, 55, 351.

[29]

H. L. Pan, T. Yang, B. Yao, R. Deng, R. Y. Sui, L. L. Gao, D. Z. Shen, Appl. Surf. Sci. 2010, 256, 4621.

[30]

R. E. Agbenyeke, S. Song, B. K. Park, G. H. Kim, J. H. Yun, T.-M. Chung, C. G. Kim, J. H. Han, Prog. Photovolt. Res. Appl. 2018, 26, 745.

[31]

M. Gloeckler, J. R. Sites, Thin Solid Films 2005, 480, 241.

[32]

A. Belghachi, N. Limam, Chin. J. Physiol. 2017, 55, 1127.

[33]

S. A. Chowdhury, S. Alam, IEEE EICT, Enhancement of device performance with optimized absorber layer in CIGS solar cell. Khulna, Bangladesh. 10-12 December 2015.

[34]

E. H. Ihalane, L. Atourki, H. Kirou, A. Ihlal, K. Bouabid, Mater. Today Proc. 2016, 3, 2570.

[35]

S. S. Shin, K. Kim, J. Yoo, J. H. Kim, S. Ahn, A. Cho, D. Kim, Y. Jo, I. Jeong, D. Shin, J.-S. Cho, J. H. Yun, J. Park, J. H. Park, Sol. Energy Mater. Sol. Cells 2021, 224, 111010.

[36]

T. Törndahl, A. Hultqvist, C. Platzer-Björkman, M. Edoff, SPIE OPTO. Growth and characterization of ZnO-based buffer layers for CIGS solar cells. San Francisco, CA. 15 February 2010.

[37]

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovolt. 2019, 9, 1863.

[38]

N. Allsop, R. Nürnberg, M. C Lux-Steiner, T. Schedel-Niedrig, Appl. Phys. Lett. 2009, 95, 122108.

[39]

G. Sozzi, S. Di Napoli, R. Menozzi, B. Bissig, S. Buecheler, A. N. Tiwari, Sol. Energy Mater. Sol. Cells 2017, 165, 94.

[40]

J. Li, Y. Ma, G. Chen, J. Gong, X. Wang, Y. Kong, X. Ma, K. Wang, W. Li, C. Yang, X. Xiao, Sol. RRL 2019, 3, 1800254.

[41]

M. Zafar, B. S. Kim, D.-H. Kim, Appl. Surf. Sci. 2019, 481, 1442.

[42]

S. H. Kim, S. Y. Joo, H. S. Jin, W.-B. Kim, T. J. Park, ACS Appl. Mater. Interfaces 2016, 8, 20880.

[43]

F. Huang, Q. Zhang, B. Xu, J. Hou, Y. Wang, R. C. Massé, S. Peng, J. Liu, G. Cao, J. Mater. Chem. A 2016, 4, 14773.

[44]

J. H. Park, D. Kim, S. S. Shin, Y. Jo, J.-S. Cho, J. Park, T. W. Kim, Appl. Surf. Sci. 2021, 558, 149844.

[45]

Q. Cao, O. Gunawan, M. Copel, K. B. Reuter, S. J. Chey, V. R. Deline, D. B. Mitzi, Adv. Energy Mater. 2011, 1, 845.

[46]

M. Turcu, U. Rau, J. Phys. Chem. Solid 2003, 64, 1591.

[47]

Y. Cho, D.-W. Kim, S. J. Ahn, D. Nam, H. Cheong, G. Y. Jeong, J. Gwak, J. H. Yun, Thin Solid Films 2013, 546, 358.

[48]

N. Naghavi, S. Temgoua, T. Hildebrandt, J. F. Guillemoles, D. Lincot, Prog. Photovolt. Res. Appl. 2015, 23, 1820.

[49]

A. Givon, K. X. Steirer, E. Segre, H. Cohen, Appl. Phys. Lett. 2018, 113, 91602.

[50]

S. M. Alqahtani, M. Usman, S. S. Ahmed, J. Appl. Phys. 2019, 125, 235704.

[51]

F. Werner, B. Veith-Wolf, M. Melchiorre, F. Babbe, J. Schmidt, S. Siebentritt, Sci. Rep. 2020, 10, 7530.

[52]

C.-S. Lee, S. Kim, E. A Al-Ammar, H. S. Kwon, B. T. Ahn, ECS. J. Solid State Sci. Technol. 2014, 3, Q99.

[53]

R. Hunger, M. V. Lebedev, K. Sakurai, T. Schulmeyer, T. Mayer, A. Klein, S. Niki, W. Jaegermann, Thin Solid Films 2007, 515, 6112.

[54]

A. Hultqvist, J. V. Li, D. Kuciauskas, P. Dippo, M. A. Contreras, D. H. Levi, S. F. Bent, Appl. Phys. Lett. 2015, 107, 33906.

[55]

S. Jung, S. J. Ahn, J. H. Yun, J. Gwak, D. Kim, K. Yoon, Curr. Appl. Phys. 2010, 10, 990.

[56]

R. Baier, J. Lehmann, S. Lehmann, T. Rissom, C. A. Kaufmann, A. Schwarzmann, Y. Rosenwaks, M. C Lux-Steiner, S. Sadewasser, Sol. Energy Mater. Sol. Cells 2012, 103, 86.

[57]

B. Noikaew, S. Sukaiem, B. Namnuan, S. Chatraphorn, J. Phys. Conf. Ser. 2018, 1144, 12069.

[58]

J.-C. Park, J.-R. Lee, M. Al-Jassim, T.-W. Kim, Opt. Mater. Express 2016, 6, 3541.

[59]

H.-J. Jo, D.-H. Kim, C. Kim, D.-K. Hwang, S.-J. Sung, J.-H. Kim, I.-H. Bae, J. Korean Phys. Soc. 2012, 60, 1708.

RIGHTS & PERMISSIONS

2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/