Dual-Functional Electrode Promoting Dendrite-Free and CO2 Utilization Enabled High-Reversible Symmetric Na-CO2 Batteries

Changfan Xu , Jiajia Qiu , Yulian Dong , Yueliang Li , Yonglong Shen , Huaping Zhao , Ute Kaiser , Guosheng Shao , Yong Lei

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12626

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12626 DOI: 10.1002/eem2.12626
RESEARCH ARTICLE

Dual-Functional Electrode Promoting Dendrite-Free and CO2 Utilization Enabled High-Reversible Symmetric Na-CO2 Batteries

Author information +
History +
PDF

Abstract

Sodium-carbon dioxide (Na-CO2) batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO2 reutilization, but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO2 cathode. Constructing suitable multifunctional electrodes for dendrite-free anodes and kinetics-enhanced CO2 cathodes is considered one of the most important ways to advance the practical application of Na-CO2 batteries. Herein, RuO2 nanoparticles encapsulated in carbon paper (RuCP) are rationally designed and employed as both Na anode host and CO2 cathode in Na-CO2 batteries. The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+ distribution and dendrite-free sodium structure at the anode, as well as strengthen discharge and charge kinetics at the cathode. The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces, delivering enhanced Coulombic efficiency of 99.5% and cycling stability near 1500 cycles. Meanwhile, Na-CO2 batteries with RuCP cathode demonstrated excellent cycling stability (>350 cycles). Significantly, implementation of a dendrite-free RuCP@Na anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO2 battery with long-duration cyclability, offering inspiration for extensive practical uses of Na-CO2 batteries.

Keywords

CO 2 cathode / dendrite free / electrocatalysis / Na metal anode / symmetric CO 2 batteries

Cite this article

Download citation ▾
Changfan Xu, Jiajia Qiu, Yulian Dong, Yueliang Li, Yonglong Shen, Huaping Zhao, Ute Kaiser, Guosheng Shao, Yong Lei. Dual-Functional Electrode Promoting Dendrite-Free and CO2 Utilization Enabled High-Reversible Symmetric Na-CO2 Batteries. Energy & Environmental Materials, 2024, 7(3): 12626 DOI:10.1002/eem2.12626

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. De Luna , C. Hahn , D. Higgins , S. A. Jaffer , T. F. Jaramillo , E. H. Sargent , Science 2019, 364, eaav3506.

[2]

W. J. Kwak , Rosy , D. Sharon , C. Xia , H. Kim , L. R. Johnson , P. G. Bruce , L. F. Nazar , Y. K. Sun , A. A. Frimer , M. Noked , S. A. Freunberger , D. Aurbach , Chem. Rev. 2020, 120, 6626.

[3]

J. Zhan , C. Xu , Y. Long , Q. Li , Trans. Nonferrous Met. Soc. China 2020, 30, 2188.

[4]

F. X. Wu , J. Maier , Y. Yu , Chem. Soc. Rev. 2020, 49, 1569.

[5]

Y. Wang , Y. Wang , Y.-X. Wang , X. Feng , W. Chen , X. Ai , H. Yang , Y. Cao , Chem 2019, 5, 2547.

[6]

Y. Dong , C. Xu , Y. Li , C. Zhang , H. Zhao , U. Kaiser , Y. Lei , Adv. Energy Mater. 2023, 2204324.

[7]

C. F. Xu , X. Fang , J. Zhan , J. X. Chen , F. Liang , Prog. Chem. 2020, 32, 836.

[8]

X. Mu , H. Pan , P. He , H. Zhou , Adv. Mater. 2020, 32, 1903790.

[9]

C. Xu , K. Zhang , D. Zhang , S. Chang , F. Liang , P. Yan , Y. Yao , T. Qu , J. Zhan , W. Ma , B. Yang , Y. Dai , X. Sun , Nano Energy 2020, 68, 104318.

[10]

C. Xu , Y. Dong , Y. Shen , H. Zhao , L. Li , G. Shao , Y. Lei , Small 2023, 2206445.

[11]

C. Xu , H. Wang , J. Zhan , Y. Kang , F. Liang , J. Power Sources 2022, 520, 230909.

[12]

B. Sun , P. Li , J. Zhang , D. Wang , P. Munroe , C. Wang , P. H. L. Notten , G. Wang , Adv. Mater. 2018, 30, 1801334.

[13]

T. Wang , Y. Hua , Z. Xu , J. S. Yu , Small 2022, 18, 2102250.

[14]

Q. Lu , A. Yang , A. Omar , Q. Ma , F. Tietz , O. Guillon , D. Mikhailova , Energ. Technol. 2022, 10, 2200149.

[15]

B. Sun , P. Xiong , U. Maitra , D. Langsdorf , K. Yan , C. Wang , J. Janek , D. Schroder , G. Wang , Adv. Mater. 2020, 32, 1903891.

[16]

Y. Wang , M. Zhu , H.-X. Liu , Y.-J. Zhang , K. Wu , G.-Y. Wang , C. Wu , New Carbon Mater. 2022, 37, 93.

[17]

C. Chu , R. Li , F. Cai , Z. Bai , Y. Wang , X. Xu , N. Wang , J. Yang , S. Dou , Energy Environ. Sci. 2021, 14, 4318.

[18]

C. Xu , J. Zhan , Z. Wang , X. Fang , J. Chen , F. Liang , H. Zhao , Y. Lei , Energy 2021, 19, 100594.

[19]

C. Xu , J. Zhan , H. Wang , Y. Kang , F. Liang , J. Mater. Chem. A 2021, 9, 22114.

[20]

E. Im , J. H. Ryu , K. Baek , G. D. Moon , S. J. Kang , Energy Storage Mater. 2021, 37, 424.

[21]

Z. Wang , Y. Cai , Y. Ni , Y. Lu , L. Lin , H. Sun , H. Li , Z. Yan , Q. Zhao , J. Chen , Chinese Chem. Lett. 2022, 34, 107405.

[22]

L. Guo , B. Li , V. Thirumal , J. Song , Chem. Commun. 2019, 55, 7946.

[23]

N. Luo , G. J. Ji , H. F. Wang , F. Li , Q. C. Liu , J. J. Xu , ACS Nano 2020, 14, 3281.

[24]

S. G. Patnaik , J. Shamsudeen Seenath , D. Bourrier , S. Prabhudev , D. Guay , D. Pech , ACS Energy Lett. 2020, 6, 131.

[25]

P.-F. Zhang , Y.-Q. Lu , Y.-J. Wu , Z.-W. Yin , J.-T. Li , Y. Zhou , Y.-H. Hong , Y.-Y. Li , L. Huang , S.-G. Sun , Chem. Eng. J. 2019, 363, 224.

[26]

K. Zhang , D. Bin , B. Yang , C. Wang , F. Ren , Y. Du , Nanoscale 2015, 7, 12445.

[27]

Y. Jin , F. Chen , J. Wang , ACS Sustain. Chem. Eng. 2020, 8, 2783.

[28]

Z. Yang , Z. Yao , G. F. Li , G. Y. Fang , H. G. Nie , Z. Liu , X. M. Zhou , X. Chen , S. M. Huang , ACS Nano 2012, 6, 205.

[29]

D. Sun , R. Ban , P. H. Zhang , G. H. Wu , J. R. Zhang , J. J. Zhu , Carbon 2013, 64, 424.

[30]

S. Ye , F. Liu , R. Xu , Y. Yao , X. Zhou , Y. Feng , X. Cheng , Y. Yu , Small 2019, 15, 1903725.

[31]

K. Lee , Y. J. Lee , M. J. Lee , J. Han , J. Lim , K. Ryu , H. Yoon , B. H. Kim , B. J. Kim , S. W. Lee , Adv. Mater. 2022, 34, 2109767.

[32]

L. Ye , M. Liao , T. Zhao , H. Sun , Y. Zhao , X. Sun , B. Wang , H. Peng , Angew. Chem. Int. Ed. 2019, 58, 17054.

[33]

H. Wang , E. Matios , J. Luo , W. Li , Chem. Soc. Rev. 2020, 49, 3783.

[34]

B. D. Adams , J. Zheng , X. Ren , W. Xu , J. G. Zhang , Adv. Energy Mater. 2017, 8, 1702097.

[35]

C. Hu , L. Gong , Y. Xiao , Y. Yuan , N. M. Bedford , Z. Xia , L. Ma , T. Wu , Y. Lin , J. W. Connell , R. Shahbazian-Yassar , J. Lu , K. Amine , L. Dai , Adv. Mater. 2020, 32, 1907436.

[36]

Y. Jin , C. Hu , Q. Dai , Y. Xiao , Y. Lin , J. W. Connell , F. Chen , L. Dai , Adv. Funct. Mater. 2018, 28, 1804630.

[37]

X. Hu , J. Sun , Z. Li , Q. Zhao , C. Chen , J. Chen , Angew. Chem. Int. Ed. 2016, 55, 6482.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

287

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/