Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation

Shuairu Zhu , Xue Wang , Jiabo Le , Na An , Jianming Li , Deyu Liu , Yongbo Kuang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12594

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) :12594 DOI: 10.1002/eem2.12594
RESEARCH ARTICLE

Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation

Author information +
History +
PDF

Abstract

Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems. Particularly, cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions. However, the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions, not to mention attract further investigation on its key structural motif and transition states for activity loss. Herein, we report exceptional stable Co-Fe spinel oxygen evolution catalysts (~30% Fe is optimal) in a neutral electrolyte, owing to its unique metal ion arrangements in the crystal lattice. The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe2+ and Fe3+ (with Co ions having mixed distribution as well). Combining density functional theory calculations, we find that the introduction of Fe to Co3O4 lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co2+/3+ and O2-. It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co3O4 and hence show much better stability. These findings suggest that there is still much chance for the spinel structures, especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.

Keywords

dual-sites iron / electrocatalyst stability / neutral electrolyte / oxygen evolution reaction / spinel oxides

Cite this article

Download citation ▾
Shuairu Zhu, Xue Wang, Jiabo Le, Na An, Jianming Li, Deyu Liu, Yongbo Kuang. Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation. Energy & Environmental Materials, 2024, 7(2): 12594 DOI:10.1002/eem2.12594

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. H. Kim, D. Hansora, P. Sharma, J. W. Jang, J. S. Lee, Chem. Soc. Rev. 2019, 48, 1908.

[2]

J. S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 2018, 8, 1702774.

[3]

T. P. Zhou, W. F. Xu, N. Zhang, Z. Y. Du, C. Zhong, W. S. Yan, H. X. Ju, W. S. Chu, H. Jiang, C. Z. Wu, Y. Xie, Adv. Mater. 2019, 31, 1807468.

[4]

Gurudayal, J. Bullock, D. F. Srankó, C. M. Towle, Y. W. Lum, M. Hettick, M. C. Scott, A. Javey, J. Ager, Energy Environ. Sci. 2017, 10, 2222.

[5]

C. Liu, B. C. Colón, M. Ziesack, P. A. Silver, D. G. Nocera, Science 2016, 352, 1210.

[6]

Y. M. He, T. Hamann, D. W. Wang, Chem. Soc. Rev. 2019, 48, 2182.

[7]

Y. K. Zhang, C. Q. Wu, H. L. Jiang, Y. X. Lin, H. J. Liu, Q. He, S. M. Chen, T. Duan, L. Song, Adv. Mater. 2018, 30, 1707522.

[8]

F. Y. Xie, H. L. Wu, J. R. Mou, D. M. Lin, C. G. Xu, C. Wu, X. P. Sun, J. Catal. 2017, 356, 165.

[9]

S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, ACS Energy Lett. 2019, 4, 933.

[10]

K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu, Y. Hou, Nano Energy 2020, 77, 105162.

[11]

N. L. W. Septiani, Y. V. Kaneti, Y. Guo, B. Yuliarto, X. Jiang, Y. Ide, N. Nugraha, H. K. Dipojono, A. Yu, Y. Sugahara, D. Golberg, Y. Yamauchi, ChemSusChem 2020, 13, 1645.

[12]

K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin, Q. Zhang, L. Lei, M. Qiu, G. Wu, Y. Hou, Energy Environ. Sci. 2022, 15, 2356.

[13]

L. Ma, S. F. Hung, L. P. Zhang, W. Z. Cai, H. B. Yang, H. M. Chen, B. Liu, Ind. Eng. Chem. Res. 2018, 57, 1441.

[14]

P. Z. Chen, K. Xu, T. P. Zhou, Y. Tong, J. C. Wu, H. Cheng, X. L. Lu, H. Ding, C. Z. Wu, Y. Xie, Angew. Chem. Int. Ed. 2016, 55, 2488.

[15]

D. Y. Guo, Z. H. Zeng, Z. X. Wan, Y. Li, B. Xi, C. X. Wang, Adv. Funct. Mater. 2021, 31, 2101324.

[16]

R. Q. Li, P. F. Hu, M. Miao, Y. L. Li, X. F. Jiang, Q. Wu, Z. Meng, Z. Hu, Y. Bando, X. B. Wang, J. Mater. Chem. A 2018, 6, 24767.

[17]

X. Zhang, X. Zhang, H. M. Xu, Z. S. Wu, H. L. Wang, Y. Y. Liang, Adv. Funct. Mater. 2017, 27, 1606635.

[18]

R. Wu, B. Xiao, Q. Gao, Y. R. Zheng, X. S. Zheng, J. F. Zhu, M. R. Gao, S. H. Yu, Angew. Chem. Int. Ed. 2018, 57, 15445.

[19]

L. Yan, B. Zhang, J. L. Zhu, Z. G. Liu, H. Y. Zhang, Y. Y. Li, J. Mater. Chem. A 2019, 7, 22453.

[20]

L. Zhang, L. S. Xie, M. Ma, F. L. Qu, G. Du, A. M. Asiri, L. Chen, X. P. Sun, Catal. Sci. Technol. 2017, 7, 2689.

[21]

T. T. Liu, L. S. Xie, J. H. Yang, R. M. Kong, G. Du, A. M. Asiri, X. P. Sun, L. Chen, ChemElectroChem 2017, 4, 1840.

[22]

L. X. Liu, D. Zhang, D. H. Duan, Y. Li, Q. B. Yuan, L. Chen, S. B. Liu, J. Electroanal. Chem. 2020, 862, 114031.

[23]

Y. Shao, X. Xiao, Y. P. Zhu, T. Y. Ma, Angew. Chem. Int. Ed. 2019, 58, 14599.

[24]

N. L. W. Septiani, Y. V. Kaneti, K. B. Fathoni, K. Kani, A. E. Allah, B. Yuliarto, Nugraha, H. K. Dipojono, Z. A. Alothman, D. Golberg, Y. Yamauchi, Chem. Mater. 2020, 32, 7005.

[25]

Z. M. Luo, J. W. Wang, J. B. Tan, Z. M. Zhang, T. B. Lu, ACS Appl. Mater. Interfaces 2018, 10, 8231.

[26]

K. D. Li, J. F. Zhang, R. Wu, Y. F. Yu, B. Zhang, Adv. Sci. 2016, 3, 1500426.

[27]

Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Energy Environ. Sci. 2016, 9, 478.

[28]

M. Huynh, T. Ozel, C. Liu, E. C. Lau, D. G. Nocera, Chem. Sci. 2017, 8, 4779.

[29]

W. L. Kwong, C. C. Lee, A. Shchukarev, J. Messinger, Chem. Commun. 2019, 55, 5017.

[30]

S. Anantharaj, K. Karthick, S. Kundu, Inorg. Chem. 2019, 58, 8570.

[31]

T. A. Evans, K. S. Choi, Acs Appl. Energy Mater. 2020, 3, 5563.

[32]

A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi, D. Hashizume, Q. Jiang, H. Han, J. Xiao, R. Nakamura, Nat. Catal. 2022, 5, 109.

[33]

A. L. Li, Y. M. Sun, T. T. Yao, H. X. Han, Chem. Eur. J. 2018, 24, 18334.

[34]

S. R. Zhu, J. B. Le, J. M. Li, D. Y. Liu, Y. B. Kuang, J. Mater. Chem. A 2021, 9, 17893.

[35]

S. Y. Hao, M. Liu, J. J. Pan, X. N. Liu, X. L. Tan, N. Xu, Y. He, L. C. Lei, X. W. Zhang, Nat. Commun. 2020, 11, 5368.

[36]

J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 2021, 143, 5201.

[37]

Y. Zhou, S. N. Sun, C. Wei, Y. M. Sun, P. X. Xi, Z. X. Feng, Z. J. Xu, Adv. Mater. 2019, 31, 1902509.

[38]

M. Huynh, C. Shi, S. J. L. Billinge, D. G. Nocera, J. Am. Chem. Soc. 2015, 137, 14887.

[39]

Z. Ding, J. Bian, S. Shuang, X. Liu, Y. Hu, C. Sun, Y. Yang, Adv. Sustainable Syst. 2020, 4, 1900105.

[40]

K. Bouferrache, Z. Charifi, H. Baaziz, G. Uğur, Ş. Uğur, B. Boyacıoğlu, H. Ünver, Phys. Scr. 2020, 95, 105801.

[41]

Z. G. Ye, C. L. Qin, G. Ma, X. Y. Peng, T. Li, D. S. Li, Z. Jin, ACS Appl. Mater. Interfaces 2018, 10, 39809.

[42]

H. A. Bandal, A. R. Jadhav, A. H. Tamboli, H. Kim, Electrochim. Acta 2017, 249, 253.

[43]

S. Saddeler, G. Bendt, S. Salamon, F. T. Haase, J. Landers, J. Timoshenko, C. Rettenmaier, H. S. Jeon, A. Bergmann, H. Wende, B. R. Cuenya, S. Schulz, J. Mater. Chem. A 2021, 9, 25381.

[44]

X. Gao, J. Liu, Y. Sun, X. Wang, Z. Geng, F. Shi, X. Wang, W. Zhang, S. Feng, Y. Wang, K. Huang, Inorg. Chem. Front. 2019, 6, 3295.

[45]

L. Calvillo, F. Carraro, O. Vozniuk, V. Celorrio, L. Nodari, A. E. Russell, D. Debellis, D. Fermin, F. Cavani, S. Agnoli, G. Granozzi, J. Mater. Chem. A 2018, 6, 7034.

[46]

H. Xiu, T. Gao, N. An, Y. Wang, Y. Zhou, X. Qi, D. Liu, Y. Kuang, ACS Appl. Energy Mater. 2022, 5, 5127.

[47]

L. Kampermann, J. Klein, J. Korte, O. Kowollik, O. Pfingsten, T. Smola, S. Saddeler, T. H. Piotrowiak, S. Salamon, J. Landers, H. Wende, A. Ludwig, S. Schulz, G. Bacher, J. Phys. Chem. C 2021, 125, 14356.

[48]

Z. Yan, D. A. Keller, K. J. Rietwyk, H. Barad, K. Majhi, A. Ginsburg, A. Y. Anderson, A. Zaban, Energ. Technol. 2016, 4, 809.

[49]

Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, Y. Xie, Angew. Chem. 2015, 127, 11383.

[50]

C. H. Wang, Q. Qiao, T. Shokuhfar, R. F. Klie, Adv. Mater. 2014, 26, 3410.

[51]

N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.

[52]

F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. D. Araujo, M. Gliech, D. Teschner, J. Zhu, W. Li, J. Greeley, B. R. Cuenya, P. Strasser, Nat. Commun. 2020, 11, 2522.

[53]

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638.

[54]

T. Z. Wu, S. N. Sun, J. J. Song, S. B. Xi, Y. H. Du, B. Chen, W. A. Sasangka, H. B. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. J. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.

[55]

S. S. Shetgaonkar, A. V. Salkar, P. P. Morajkar, Chem. Asian J. 2021, 16, 2871.

[56]

S. H. Ye, Y. Zhang, W. Xiong, T. T. Xu, P. Liao, P. Y. Zhang, X. Z. Ren, C. X. He, L. R. Zheng, X. P. Ouyang, Q. L. Zhang, J. H. Liu, Nanoscale 2020, 12, 11079.

[57]

X. T. Wang, T. Ouyang, L. Wang, J. H. Zhong, T. Y. Ma, Z. Q. Liu, Angew. Chem. Int. Ed. 2019, 58, 13291.

[58]

T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441.

[59]

J. L. Liu, D. D. Zhu, T. Ling, A. Vasileff, S. Z. Qiao, Nano Energy 2017, 40, 264.

[60]

R. S. Yadav, J. Havlica, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer, I. Kuřitka, Z. Kozakova, J. Supercond. Nov. Magn. 2015, 28, 1851.

[61]

P. Sahoo, H. Djieutedjeu, P. F. P. Poudeu, J. Mater. Chem. A 2013, 1, 15022.

[62]

A. Q. Mao, H. X. Xie, H. Z. Xiang, Z. G. Zhang, H. Zhang, S. L. Ran, J. Magn. Magn. Mater. 2020, 503, 166594.

[63]

Y. Xu, F. C. Zhang, T. Sheng, T. Ye, D. Yi, Y. J. Yang, S. J. Liu, X. Wang, J. N. Yao, J. Mater. Chem. A 2019, 7, 23191.

[64]

R. Z. Chen, Y. Y. Tan, Z. Y. Zhang, Z. Lei, W. Wu, N. C. Cheng, S. C. Mu, ACS Sustain. Chem. Eng. 2020, 8, 9813.

[65]

H. Y. Chen, L. Z. Song, S. X. Ouyang, J. B. Wang, J. Lv, J. H. Ye, Adv. Sci. 2019, 6, 1900465.

[66]

Y. Tan, C. C. Wu, H. Lin, J. B. Li, B. Chi, J. Pu, L. Jian, Electrochim. Acta 2014, 121, 183.

[67]

C. Lin, J. L. Li, X. P. Li, S. Yang, W. Luo, Y. J. Zhang, S. H. Kim, D. H. Kim, S. S. Shinde, Y. F. Li, Z. P. Liu, Z. Jiang, J. H. Lee, Nat. Catal. 2021, 4, 1012.

[68]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[69]

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/