Synergistic Tuning of Nickel Cobalt Selenide@Nickel Telluride Core-Shell Heteroarchitectures for Boosting Overall Urea Electrooxidation and Electrochemical Supercapattery

Diab Khalafallah , Weibo Huang , Mingjia Zhi , Zhanglian Hong

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12528

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12528 DOI: 10.1002/eem2.12528
RESEARCH ARTICLE

Synergistic Tuning of Nickel Cobalt Selenide@Nickel Telluride Core-Shell Heteroarchitectures for Boosting Overall Urea Electrooxidation and Electrochemical Supercapattery

Author information +
History +
PDF

Abstract

Herein, we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride (NixCo12–xSe@NiTe) core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and supercapacitors. The 3D vertically orientated NiTe dendritic frameworks induce the homogeneous nucleation of 2D NixCo12–xSe nanosheet arrays along similar crystal directions and bring a strong interfacial binding between the integrated active components. In particular, the optimized Ni6Co6Se@NiTe with an interface coupling effect works in concert to tune the intrinsic activity. It only needs a low overpotential of 1.33 V to yield a current density of 10 mA cm-2 for alkaline urea electrolysis. Meanwhile, the full urea catalysis driven only by Ni6Co6Se@NiTe achieves 10 mA cm–2 at a potential of 1.38 V and can approach a constant level of the current response for 40 h. Besides, the integrated Ni6Co6Se@NiTe electrode delivers an enhanced specific capacity (223 mA h g–1 at 1 A g–1) with a high cycling stability. Consequently, a hybrid asymmetric supercapacitor (HASC) device based on Ni6Co6Se@NiTe exhibits a favorable rate capability and reaches a high energy density of 67.7 Wh kg–1 and a power density of 724.8 W kg–1 with an exceptional capacity retention of 92.4% after sequential 12 000 cycles at 5 A g–1.

Keywords

bifunctional Ni xCo 12–xSe@NiTe core-shell / electrodeposition / heterointerfaces / supercapacitors / UOR

Cite this article

Download citation ▾
Diab Khalafallah, Weibo Huang, Mingjia Zhi, Zhanglian Hong. Synergistic Tuning of Nickel Cobalt Selenide@Nickel Telluride Core-Shell Heteroarchitectures for Boosting Overall Urea Electrooxidation and Electrochemical Supercapattery. Energy & Environmental Materials, 2024, 7(1): 12528 DOI:10.1002/eem2.12528

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. G. Wang, Y. F. Song, Y. Y. Xia, Chem. Soc. Rev. 2016, 45, 5925.

[2]

Y. Zhang, T. T. Zuo, J. Popovic, K. Lim, Y. X. Yin, J. Maier, Y. G. Guo, Mater. Today 2020, 33, 56.

[3]

J. Wang, L. Han, B. Huang, Q. Shao, H. L. Xin, X. Huang, Nat. Commun. 2019, 10, 5692.

[4]

D. Khalafallah, C. Ouyang, M. Zhi, Z. Hong, Nanotechnology 2020, 31, 475401.

[5]

P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.

[6]

D. Khalafallah, M. Zhi, Z. Hong, ChemCatChem 2021, 13, 81.

[7]

D. Khalafallah, M. Zhi, Z. Hong, Top. Curr. Chem. 2019, 377, 29.

[8]

A. Noori, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner, M. F. Mousavi, Chem. Soc. Rev. 2019, 48, 1272.

[9]

D. Khalafallah, Q. Zou, M. Zhi, Z. Hong, Electrochim. Acta 2020, 350, 136399.

[10]

X. Sun, R. Ding, Catal. Sci. Technol. 2020, 10, 1567.

[11]

D. Khalafallah, L. Xiaoyu, M. Zhi, Z. Hong, ChemElectroChem 2020, 7, 163.

[12]

W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Mater. Today 2017, 20, 116.

[13]

E. T. Sayed, M. A. Abdelkareem, A. Bahaa, T. Eisa, H. Alawadhi, S. Al- Asheh, K.-J. Chae, A. G. Olabi, Renew. Sust. Energ. Rev. 2021, 150, 111470.

[14]

H. Yuan, L. Kong, T. Li, Q. Zhang, Chin. Chem. Lett. 2017, 28, 2180.

[15]

S. Zhang, D. Yang, M. Zhang, Y. Liu, T. Xu, J. Yang, Z.-Z. Yu, Inorg. Chem. Front. 2020, 7, 477.

[16]

M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 2013, 42, 2986.

[17]

S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing, L. Wang, J. Yu, H. Liu, C. Chen, L. Yang, Appl. Catal. B Environ. 2021, 299, 120638.

[18]

U. De Silva, J. Masud, N. Zhang, Y. Hong, W. P. R. Liyanage, M. A. Zaeem, M. Nath, J. Mater. Chem. A 2018, 6, 7608.

[19]

Y. Qi, Z. Yang, S. Peng, M. Wang, J. Bai, H. Li, D. Xiong, Inorg. Chem. Front. 2021, 8, 4247.

[20]

D. Khalafallah, C. Ouyang, M. Zhi, Z. Hong, ChemElectroChem 2019, 6, 5191.

[21]

Y. Zhou, Y. Chen, M. Wei, H. Fan, X. Liu, Q. Liu, Y. Liu, J. Cao, L. Yang, CrystEngComm 2021, 23, 69.

[22]

D. Khalafallah, Z. Wu, M. Zhi, Z. Hong, Chem. Eur. J. 2020, 26, 2251.

[23]

S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, J. Power Sources 2014, 257, 421.

[24]

D. Khalafallah, X. Quan, C. Ouyang, M. Zhi, Z. Hong, Renew. Energ. 2021, 170, 60.

[25]

D. Khalafallah, M. Zhi, Z. Hong, J. Colloid Interface Sci. 2022, 606, 1352.

[26]

B. Ramulu, G. Nagaraju, S. C. Sekhar, S. K. Hussain, D. Narsimulu, J. Su Yu, ACS Appl. Mater. Interfaces 2019, 11, 41245.

[27]

G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, Nano Micro Lett. 2021, 13, 77.

[28]

J. Xiao, H. Tong, F. Jin, D. Gong, X. Chen, Y. Wu, Y. Zhou, L. Shen, X. Zhang, J. Power Sources 2022, 518, 230763.

[29]

H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 3, 1806326.

[30]

L. Zhang, X. Zhao, W. Ma, M. Wu, N. Qian, W. Lu, CrystEngComm 2013, 15, 1389.

[31]

J. Cao, K. Wang, J. Chen, C. Lei, B. Yang, Z. Li, L. Lei, Y. Hou, K. Ostrikov, Nano Micro Lett. 2019, 11, 67.

[32]

L. Zhang, W. Chen, T. Wang, Y. Li, C. Ma, Y. Zheng, J. Gong, Inorg. Chem. Front. 2021, 8, 3230.

[33]

Y.-Y. Sun, M.-Y. Jiang, L.-K. Wu, G.-Y. Hou, Y.-P. Tang, M. Liu, Sustain. Energy Fuels 2020, 4, 582.

[34]

J. Chen, J. J. Davies, A. S. Goodfellow, S. M. D. Hall, H. G. Lancaster, X. Liu, C. J. Rhodes, W. Zhou, Prog. Nat. Sci. Mater. Int. 2021, 31, 141.

[35]

X. Zheng, J. Jiang, T. Bi, F. Jin, M. Li, ACS Appl. Energy Mater. 2021, 4, 3288.

[36]

Z. Ji, Y. Song, S. Zhao, Y. Li, J. Liu, W. Hu, ACS Catal. 2022, 12, 569.

[37]

S. Adhikari, Y. Kwon, D.-H. Kim, Chem. Eng. J. 2020, 402, 126192.

[38]

Y. Li, H. Jiang, Z. Cui, S. Zhu, Z. Li, S. Wu, L. Ma, X. Han, Y. Liang, J. Phys. Chem. C 2021, 125, 9190.

[39]

K. Wang, W. Huang, Q. Cao, Y. Zhao, X. Sun, R. Ding, W. Lin, E. Liu, P. Gao, Chem. Eng. J. 2022, 427, 130865.

[40]

H. Liu, Z. Liu, F. Wang, L. Feng, Chem. Eng. J. 2020, 397, 125507.

[41]

X. Wang, J. Wang, X. Sun, S. Wei, L. Cui, W. Yang, J. Liu, Nano Res. 2018, 11, 988.

[42]

C. Xiao, S. Li, X. Zhang, D. R. MacFarlane, J. Mater. Chem. A 2017, 5, 7825.

[43]

L. Yan, Y. Sun, E. Hu, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, J. Colloid Interface Sci. 2019, 541, 279.

[44]

J. Cao, H. Li, R. Zhu, L. Ma, K. Zhou, Q. Wei, F. Luo, J. Alloys Compd. 2020, 844, 155382.

[45]

J. Li, C. Yao, X. Kong, Z. Li, M. Jiang, F. Zhang, X. Lei, ACS Sustain. Chem. Eng. 2019, 7, 13278.

[46]

Q. Liu, L. Xie, F. Qu, Z. Liu, G. Du, A. M. Asiri, X. Sun, Inorg. Chem. Front. 2017, 4, 1120.

[47]

W. Zhu, M. Ren, N. Hu, W. Zhang, Z. Luo, R. Wang, J. Wang, L. Huang, Y. Suo, J. Wang, ACS Sustain. Chem. Eng. 2018, 6, 5011.

[48]

L. Sha, J. Yin, K. Ye, G. Wang, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, J. Mater. Chem. A 2019, 7, 9078.

[49]

P. Hao, W. Zhu, L. Li, J. Tian, J. Xie, F. Lei, G. Cui, Y. Zhang, B. Tang, Electrochim. Acta 2020, 338, 135883.

[50]

B. Huang, W. Wang, T. Pu, J. Li, C. Zhao, L. Xie, L. Chen, Chem. Eng. J. 2019, 375, 121969.

[51]

J. Ma, J. Xia, Z. Liang, X. Chen, Y. Du, C.-H. Yan, Small 2021, 17, 2104423.

[52]

T. Nguyen, M. Fátima Montemor, J. Mater. Chem. A 2018, 6, 2612.

[53]

Y. Li, B. Huang, X. Zhao, Z. Luo, S. Liang, H. Qin, L. Chen, J. Power Sources 2022, 527, 231149.

[54]

D. Khalafallah, X. Li, M. Zhi, Z. Hong, ACS Appl. Nano Mater. 2021, 4, 14258.

[55]

F. B. M. Ahmed, D. Khalafallah, M. Zhi, Z. Hong, Adv. Compos Hybrid Mater. 2022, 5, 2500.

[56]

D. Khalafallah, M. Zhi, Z. Hong, Ceram. Int. 2021, 47, 29081.

[57]

N. M. Santhosh, K. K. Upadhyay, P. Stražar, G. Filipič, J. Zavašnik, A. M. Ferro, R. P. Silva, E. Tatarova, M. F. Montemor, U. Cvelbar, ACS Appl. Mater. Interfaces 2021, 13, 20559.

[58]

N. R. Chodankar, S. J. Patil, S.-K. Hwang, P. A. Shinde, S. V. Karekar, G. S. R. Raju, K. S. Ranjith, A. G. Olabi, D. P. Dubal, Y. S. Huh, Y.-K. Han, Energy Stor. Mater. 2022, 49, 564.

[59]

H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, ACS Sustain. Chem. Eng. 2017, 5, 5951.

[60]

A. Gopalakrishnan, S. Badhulika, Energy Fuel 2021, 35, 9646.

[61]

Q. Hu, X. Jiang, M. He, Q. Zheng, K. H. Lam, D. Lin, Electrochim. Acta 2020, 338, 135896.

[62]

J. Yu, D. Yao, Z. Wu, G. Li, J. Song, H. Shen, X. Yang, W. Lei, F. Wu, Q. Hao, ACS Appl. Energy Mater. 2021, 4, 3093.

[63]

L. Han, P. Tang, L. Zhang, Nano Energy 2014, 7, 42.

[64]

L. Lin, L. Li, S. Hussain, S. Zhao, L. Wu, X. Peng, N. Hu, Appl. Surf. Sci. 2018, 452, 113.

[65]

Y. Huang, S. Ge, X. Chen, Z. Xiang, X. Zhang, R. Zhang, Y. Cui, Chem. Eur. J. 2019, 25, 14117.

[66]

T. Purkait, G. Singh, D. Kumar, M. Singh, R. S. Dey, Sci. Rep. 2018, 8, 640.

[67]

M. M. Ovhal, N. Kumar, S. K. Hong, H. W. Lee, J. W. Kang, J. Alloys Comp. 2020, 828, 154447.

[68]

W. Zhang, W. Yang, H. Zhou, Z. Zhang, M. Zhao, Q. Liu, J. Yang, X. Lu, Electrochim. Acta 2020, 357, 136855.

[69]

J. Wang, B. Ding, X. Hao, Y. Xu, Y. Wang, L. Shen, H. Dou, X. Zhang, Carbon 2016, 102, 255.

[70]

T. Tevi, H. Yaghoubi, J. Wang, A. Takshi, J. Power Sources 2013, 241, 589.

[71]

D. Guo, Y. Zhang, W. Sun, D. Chu, B. Li, L. Tan, H. Ma, H. Pang, X. Wang, L. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 41580.

[72]

L. Liu, X. Yu, W. Zhang, Q. Lv, L. Hou, Y. Fautrelle, Z. Ren, G. Cao, X. Lu, X. Li, ACS Appl. Mater. Interfaces 2022, 14, 2782.

[73]

D. Khalafallah, J. Miao, M. Zhi, Z. Hong, Appl. Surf. Sci. 2021, 564, 150449.

[74]

R. Bai, X. Luo, D. Zhen, C. Ci, J. Zhang, D. Wu, M. Cao, Y. Liu, Int. J. Hydrog. Energy 2020, 45, 32343.

[75]

D. Khalafallah, W. Huang, M. Wunn, M. Zhi, Z. Hong, J. Energy Storage 2022, 45, 103716.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/