Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries
Yuepeng Pang , Zhengfang Nie , Fen Xu , Lixian Sun , Junhe Yang , Dalin Sun , Fang Fang , Shiyou Zheng
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12527
Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries. In this work, we develop an amorphous Mg borohydride ammoniate, Mg(BH4)2·2NH3, as a solid Mg electrolyte that prepared by a NH3 redistribution between 3D framework-γ-Mg(BH4)2 and Mg(BH4)2·6NH3. Amorphous Mg(BH4)2·2NH3 exhibits a high Mg-ion conductivity of 5 × 10-4 S cm-1 at 75 °C, which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations. Moreover, amorphous Mg(BH4)2·2NH3 shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases, which can prevent further side reactions without hindering the Mg-ion transfer. Based on the above superiorities, amorphous Mg(BH4)2·2NH3 enables the stable cycling of all-solid-state Mg cells, as the critical current density reaches 3.2 mA cm-2 for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g-1 with a coulombic efficiency of 91.7% (first cycle) for Mg||TiS2 cells.
all-solid-state Mg batteries / amorphization / Mg borohydride ammoniate / Mg vacancy migration / solid electrolyte
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |