Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries

Yuepeng Pang , Zhengfang Nie , Fen Xu , Lixian Sun , Junhe Yang , Dalin Sun , Fang Fang , Shiyou Zheng

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12527

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12527 DOI: 10.1002/eem2.12527
RESEARCH ARTICLE

Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries

Author information +
History +
PDF

Abstract

Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries. In this work, we develop an amorphous Mg borohydride ammoniate, Mg(BH4)2·2NH3, as a solid Mg electrolyte that prepared by a NH3 redistribution between 3D framework-γ-Mg(BH4)2 and Mg(BH4)2·6NH3. Amorphous Mg(BH4)2·2NH3 exhibits a high Mg-ion conductivity of 5 × 10-4 S cm-1 at 75 °C, which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations. Moreover, amorphous Mg(BH4)2·2NH3 shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases, which can prevent further side reactions without hindering the Mg-ion transfer. Based on the above superiorities, amorphous Mg(BH4)2·2NH3 enables the stable cycling of all-solid-state Mg cells, as the critical current density reaches 3.2 mA cm-2 for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g-1 with a coulombic efficiency of 91.7% (first cycle) for Mg||TiS2 cells.

Keywords

all-solid-state Mg batteries / amorphization / Mg borohydride ammoniate / Mg vacancy migration / solid electrolyte

Cite this article

Download citation ▾
Yuepeng Pang, Zhengfang Nie, Fen Xu, Lixian Sun, Junhe Yang, Dalin Sun, Fang Fang, Shiyou Zheng. Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries. Energy & Environmental Materials, 2024, 7(1): 12527 DOI:10.1002/eem2.12527

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Liu, T. Wang, X. Liu, L. Z. Fan, Adv. Energy Mater. 2021, 11, 2000787.

[2]

P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman, P. N. Kumta, Prog. Mater. Sci. 2014,

[3]

H. Fan, X. Zhang, Y. Zhao, J. Xiao, H. Yuan, G. Wang, Y. Lin, J. Zhang, L. Pan, T. Pan, Y. Liu, Y. Zhang, Energy Environ. Mater. 2022,

[4]

H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265.

[5]

R. Deivanayagam, B. J. Ingram, R. Shahbazian-Yassar, Energy Storage Mater. 2019, 21, 136.

[6]

J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941.

[7]

C. Liebenow, J. Appl. Electrochem. 1997, 27, 221.

[8]

R. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 2014, 50, 243.

[9]

O. Tutusaus, R. Mohtadi, T. S. Arthur, F. Mizuno, E. G. Nelson, Y. V. Sevryugina, Angew. Chem. Int. Ed. 2015, 54, 7900.

[10]

B. Li, R. Masse, C. Liu, Y. Hu, W. Li, G. Zhang, G. Cao, Energy Storage Mater. 2019, 22, 96.

[11]

B. McAllister, L. Kyne, T. Schon, D. Seferos, Joule 2019, 3, 620.

[12]

Y. Zhang, H. Geng, W. Wei, J. Ma, L. Chen, C. C. Li, Energy Storage Mater. 2019, 20, 118.

[13]

J. Lin, L. Lin, S. Qu, D. Deng, Y. Wu, X. Yan, Q. Xie, L. Wang, D. Peng, Energy Environ. Mater. 2022, 5, 133.

[14]

Y. Gao, A. M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S. H. Bo, Chem. Rev. 2020, 120, 5954.

[15]

P. Jaschin, Y. Gao, Y. Li, S. H. Bo, J. Mater. Chem. A 2020, 8, 2875.

[16]

M. Adamu, G. M. Kale, J. Phys. Chem. C 2016, 120, 17909.

[17]

T. Yamanaka, A. Hayashi, A. Yamauchi, M. Tatsumisago, Solid State Ionics 2014, 262, 601.

[18]

P. Canepa, S. H. Bo, G. Sai Gautam, B. Key, W. D. Richards, T. Shi, Y. Tian, Y. Wang, J. Li, G. Ceder, Nat. Commun. 2017, 8, 1759.

[19]

S. Higashi, K. Miwa, M. Aoki, K. Takechi, Chem. Commun. 2014, 50, 1320.

[20]

F. Cuevas, M. B. Amdisen, M. Baricco, C. E. Buckley, Y. W. Cho, P. de Jongh, L. M. de Kort, J. B. Grinderslev, V. Gulino, B. C. Hauback, M. Heere, T. Humphries, T. R. Jensen, S. Kim, K. Kisu, Y.-S. Lee, H.-W. Li, R. Mohtadi, K. T. Møller, P. Ngene, D. Nor eus, S. Orimo, M. Paskevicius, M. Polanski, S. Sartori, L. N. Skov, M. H. Sørby, B. C. Wood, V. A. Yartys, M. Zhu, M. Latroche, Prog. Energy 2022, 4, 032001.

[21]

Y. Pang, Y. Liu, J. Yang, S. Zheng, C. Wang, Mater. Today Nano 2022, 18, 100194.

[22]

R. Le Ruyet, R. Berthelot, E. Salager, P. Florian, B. Fleutot, R. Janot, J. Phys. Chem. C 2019, 123, 10756.

[23]

R. Le Ruyet, B. Fleutot, R. Berthelot, Y. Benabed, G. Hautier, Y. Filinchuk, R. Janot, ACS Appl. Energy Mater. 2020, 3, 6093.

[24]

E. Roedern, R. S. Kuhnel, A. Remhof, C. Battaglia, Sci. Rep. 2017, 7, 46189.

[25]

K. Kisu, S. Kim, M. Inukai, H. Oguchi, S. Takagi, S.-I. Orimo, ACS Appl. Energy Mater. 2020, 3, 3174.

[26]

Y. Yan, W. Dononelli, M. Jorgensen, J. B. Grinderslev, Y. S. Lee, Y. W. Cho, R. Cerny, B. Hammer, T. R. Jensen, Phys. Chem. Chem. Phys. 2020, 22, 9204.

[27]

Y. Yan, J. B. Grinderslev, M. Jogensen, L. N. Skov, J. Skibsted, T. R. Jensen, ACS Appl. Energy Mater. 2020, 3, 9264.

[28]

Y. Yan, J. Grinderslev, T. Burankova, S. Wei, J. Embs, J. Skibsted, T. Jensen, J. Phys. Chem. Lett. 2022, 13, 2211.

[29]

Q. Wang, H. Li, R. Zhang, Z. Liu, H. Deng, W. Cen, Y. Yan, Y. Chen, Energy Storage Mater. 2022, 51, 630.

[30]

Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrochem. Energy Rev. 2021,

[31]

O. Tutusaus, R. Mohtadi, N. Singh, T. S. Arthur, F. Mizuno, ACS Energy Lett. 2017, 2, 224.

[32]

Y. Yang, Y. Liu, Y. Li, M. Gao, H. Pan, Chem. Asian J. 2013, 8, 476.

[33]

G. Soloveichik, J.-H. Her, P. W. Stephens, Y. Gao, J. Rijssenbeek, M. Andrus, J.-C. Zhao, Inorg. Chem. 2008, 47, 4290.

[34]

O. Zavorotynska, A. El-Kharbachi, S. Deledda, B. C. Hauback, Int. J. Hydrog. Energy 2016, 41, 14387.

[35]

Y. Yang, Y. Liu, H. Wu, W. Zhou, M. Gao, H. Pan, Phys. Chem. Chem. Phys. 2014, 16, 135.

[36]

Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, H. Hagemann, Angew. Chem. Int. Ed. 2011, 50, 11162.

[37]

S. Zhao, B. Xu, N. Sun, Z. Sun, Y. Zeng, L. Meng, Int. J. Hydrog. Energy 2015, 40, 8721.

[38]

Y. Limoge, “Diffusion in Amorphous Materials.” Diffusion in Materials, Springer, Dordrecht 1990, pp. 601.

[39]

J. L. Souquet, Ann. Rev. Mater. Sci. 1981, 11, 211.

[40]

V. Gulino, A. Wolczyk, A. Golov, R. Eremin, M. Palumbo, C. Nervi, V. Blatov, D. Proserpio, M. Baricco, Inorg. Chem. Front. 2020, 7, 3115.

[41]

F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Adv. Energy Mater. 2016, 6, 1501590.

[42]

F. Lu, Y. Pang, M. Zhu, F. Han, J. Yang, F. Fang, D. Sun, S. Zheng, C. Wang, Adv. Funct. Mater. 2019, 29, 1809219.

[43]

R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher, S. Xiang, J. Van Buskirk, K. Xie, M. Pharr, P. P. Mukherjee, S. Banerjee, ACS Energy Lett. 2019, 4, 375.

[44]

X. Sun, P. Bonnick, L. F. Nazar, ACS Energy Lett. 2016, 1, 297.

[45]

Y. Pang, X. Wang, X. Shi, F. Xu, L. Sun, J. Yang, S. Zheng, Adv. Energy Mater. 2020, 10, 1902795.

[46]

M. Zhu, Y. Pang, F. Lu, X. Shi, J. Yang, S. Zheng, ACS Appl. Mater. Interfaces 2019, 11, 14136.

[47]

P. E. Blochl, O. Jepsen, O. Andersen, Phys. Rev. B 1994, 49, 16223.

[48]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[49]

J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[50]

G. Henkelman, B. P. Uberuaga, H. J onsson, J. Chem. Phys. 2000, 113, 9901.

[51]

M. A. Tschopp, M. F. Horstemeyer, F. Gao, X. Sun, M. Khaleel, Scr. Mater. 2011, 64, 908.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

247

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/