Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector

Xuexia Chen , Dongwen Yang , Xun Yang , Qing Lou , Zhiyu Liu , Yancheng Chen , Chaofan Lv , Lin Dong , Chongxin Shan

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12515

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12515 DOI: 10.1002/eem2.12515
RESEARCH ARTICLE

Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector

Author information +
History +
PDF

Abstract

Ultraviolet position-sensitive detectors (PSDs) are expected to undergo harsh environments, such as high temperatures, for a wide variety of applications in military, civilian, and aerospace. However, no report on relevant PSDs operating at high temperatures can be found up to now. Herein, we design a new 2D/3D graphitic carbon nitride (g-C3N4)/gallium nitride (GaN) hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD. The g-C3N4/GaN PSD exhibits a high position sensitivity of 355 mV mm-1, a rise/fall response time of 1.7/2.3 ms, and a nonlinearity of 0.5% at room temperature. The ultralow formation energy of -0.917 eV atom-1 has been obtained via the thermodynamic phase stability calculations, which endows g-C3N4 with robust stability against heat. By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C3N4, the g-C3N4/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm-1 and 1.4%, respectively, with high repeatability at a high temperature up to 700 K, outperforming most of the other counterparts and even commercial silicon-based devices. This work unveils the high-temperature PSD, and pioneers a new path to constructing g-C3N4-based harsh-environment-tolerant optoelectronic devices.

Keywords

graphitic carbon nitride / high-temperature stability / lateral photovoltaic effect / position-sensitive detectors / two-dimensional materials

Cite this article

Download citation ▾
Xuexia Chen, Dongwen Yang, Xun Yang, Qing Lou, Zhiyu Liu, Yancheng Chen, Chaofan Lv, Lin Dong, Chongxin Shan. Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector. Energy & Environmental Materials, 2024, 7(1): 12515 DOI:10.1002/eem2.12515

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti, B. König, Science 2019, 365, 360.

[2]

L. Du, Q. Tian, X. Zheng, W. Guo, W. Liu, Y. Zhou, F. Shi, Q. Xu, Energy Environ. Mater. 2021, 5, 912.

[3]

T. Wang, C. Nie, Z. Ao, S. Wang, T. An, J. Mater. Chem. A 2020, 8, 485.

[4]

Y. Li, X. Liu, L. Tan, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K. W. K. Yeung, D. Zheng, X. Wang, S. Wu, Adv. Funct. Mater. 2019, 29, 1900946.

[5]

B. Jiang, H. Huang, W. Gong, X. Gu, T. Liu, J. Zhang, W. Qin, H. Chen, Y. Jin, Z. Liang, L. Jiang, Adv. Funct. Mater. 2021, 31, 2105045.

[6]

X. Wu, L. Tang, Y. Si, C. Ma, P. Zhang, J. Yu, Y. Liu, B. Ding, Energy Environ. Mater. 2022,

[7]

G. Algara-Siller, N. Severin, S. Y. Chong, T. Björkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, M. J. Bojdys, Angew. Chem. Int. Ed. 2014, 126, 7580.

[8]

Q. Shen, P. Jiang, H. He, Y. Feng, Y. Cai, D. Lei, M. Cai, M. Zhang, Energy Environ. Mater. 2021, 4, 638.

[9]

L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu, Z. Zhao, Q. Zhang, H. Ni, L. Chen, Mater. Today 2019, 22, 76.

[10]

J. Xu, M. Shalom, F. Piersimoni, M. Antonietti, D. Neher, T. J. K. Brenner, Adv. Opt. Mater. 2015, 3, 913.

[11]

J. Bian, C. Huang, R.-Q. Zhang, ChemSusChem 2016, 9, 2723.

[12]

C. Jia, L. Yang, Y. Zhang, X. Zhang, K. Xiao, J. Xu, J. Liu, A. C. S. Appl, Mater. Interfaces 2020, 12, 53571.

[13]

H. Y. Hoh, Y. Zhang, Y. L. Zhong, Q. Bao, Adv. Opt. Mater. 2021, 9, 2100146.

[14]

Z. Liu, C. Wang, Z. Zhu, Q. Lou, C. Shen, Y. Chen, J. Sun, Y. Ye, J. Zang, L. Dong, C.-X. Shan, Matter 2021, 4, 1625.

[15]

A. Dong, H. Wang, Ann. Phys. 2019, 531, 1800440.

[16]

L. Hao, Y. Liu, Z. Han, Z. Xu, J. Zhu, Nanoscale Res. Lett. 2017, 12, 562.

[17]

C. Hu, X. Wang, B. Song, Light Sci. Appl. 2020, 9, 88.

[18]

S. Qiao, K. Feng, Z. Li, G. Fu, S. Wang, J. Mater. Chem. C 2017, 5, 4915.

[19]

J. Liu, Z. Zhang, S. Qiao, G. Fu, S. Wang, C. Pan, Sci. Bull. 2020, 65, 477.

[20]

W. Wang, J. Lu, Z. Ni, Nano Res. 1889, 2020, 14.

[21]

Y. Hao, S. Guo, D. Weller, M. Zhang, C. Ding, K. Chai, L. Xie, R. Liu, Adv. Funct. Mater. 2019, 29, 1805967.

[22]

W.-H. Wang, R.-X. Du, X.-T. Guo, J. Jiang, W.-W. Zhao, Z.-H. Ni, X.-R. Wang, Y.-M. You, Z.-H. Ni, Light Sci. Appl. 2017, 6, e17113.

[23]

S. Qiao, B. Liang, J. Liu, G. Fu, S. Wang, J. Phys. D Appl. Phys. 2021, 54, 153003.

[24]

K. Li, Z. Jinhao, X. Yang, Y. Tian, C. Lin, P. Sun, Z. Zhang, Y. Chen, S. Chongxin, Phys. Status Solidi RRL 2021,

[25]

B. Song, X. Wang, B. Li, L. Zhang, Z. Lv, Y. Zhang, Y. Wang, J. Tang, P. Xu, B. Li, Y. Yang, Y. Sui, B. Song, Opt. Express 2016, 24, 23755.

[26]

A. R. M. Foisal, T. Nguyen, T. Dinh, T. K. Nguyen, P. Tanner, E. W. Streed, D. V. Dao, A. C. S. Appl, Mater. Interfaces 2019, 11, 40980.

[27]

J. Watson, G. Castro, J. Mater. Sci. Mater. Electron. 2015, 26, 9226.

[28]

H. So, J. Lim, D. G. Senesky, IEEE Sensors J. 2016, 16, 3633.

[29]

Z. Liu, Y. Zhi, S. Zhang, S. Li, Z. Yan, A. Gao, S. Zhang, D. Guo, J. Wang, Z. Wu, P. Li, W. Tang, Sci. China Technol. Sci. 2021, 64, 59.

[30]

K. Li, J. Zang, X. Yang, Y. Tian, C. Lin, P. Sun, Z. Zhang, Y. Chen, C. Shan, Phys. Status Solidi RRL 2021, 15, 2100347.

[31]

E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman, New J. Chem. 2002, 26, 508.

[32]

W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159.

[33]

R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D. S. Katzer, N. Nepal, B. P. Downey, D. A. Muller, H. G. Xing, D. J. Meyer, D. Jena, Nature 2018, 555, 183.

[34]

Z. Zheng, L. Zhang, W. Song, S. Feng, H. Xu, J. Sun, S. Yang, T. Chen, J. Wei, K. J. Chen, Nat. Electron. 2021, 4, 595.

[35]

G. Filippini, F. Longobardo, L. Forster, A. Criado, G. Di Carmine, L. Nasi, C. D’Agostino, M. Melchionna, P. Fornasiero, M. Prato, Sci. Adv. 2020, 6, eabc9923.

[36]

M. Majdoub, Z. Anfar, A. Amedlous, ACS Nano 2020, 14, 12390.

[37]

V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch, Nat. Commun. 2016, 7, 12165.

[38]

T. Xu, Z. Xia, H. Li, P. Niu, S. Wang, L. Li, Energy Environ. Mater. 2022,

[39]

D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, T. E. Haynes, J. Appl. Phys. 2000, 88, 4196.

[40]

X. J. Li, D. G. Zhao, D. S. Jiang, Z. S. Liu, P. Chen, J. J. Zhu, L. C. Le, J. Yang, X. G. He, S. M. Zhang, B. S. Zhang, J. P. Liu, H. Yang, J. Appl. Phys. 2014, 116, 163708.

[41]

R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi, T. Xu, J. Xu, Y. Tian, X. Li, J. Mater. Chem. C 2018, 6, 299.

[42]

R. Wang, H. Li, L. Zhang, Y.-J. Zeng, Z. Lv, J.-Q. Yang, J.-Y. Mao, Z. Wang, Y. Zhou, S.-T. Han, J. Mater. Chem. C 2019, 7, 10203.

[43]

J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 10145.

[44]

C. Hu, X. Wang, P. Miao, L. Zhang, B. Song, W. Liu, Z. Lv, Y. Zhang, Y. Sui, J. Tang, Y. Yang, B. Song, P. Xu, A. C. S. Appl, Mater. Interfaces 2017, 9, 18362.

[45]

S. Q. Xiao, H. Wang, C. Q. Yu, Y. X. Xia, J. J. Lu, Q. Y. Jin, Z. H. Wang, New J. Phys. 2008, 10, 033018.

[46]

X. Wang, X. Zhao, C. Hu, Y. Zhang, B. Song, L. Zhang, W. Liu, Z. Lv, Y. Zhang, J. Tang, Y. Sui, B. Song, Appl. Phys. Lett. 2016, 109, 023502.

[47]

X. Huang, C. Mei, Z. Gan, P. Zhou, H. Wang, Appl. Phys. Lett. 2017, 110, 121103.

[48]

C. Wang, K. Jin, R. Zhao, H. Lu, H. Guo, C. Ge, M. He, C. Wang, G. Yang, Appl. Phys. Lett. 2011, 98, 181101.

[49]

C. Q. Yu, H. Wang, Y. X. Xia, Appl. Phys. Lett. 2009, 95, 263506.

[50]

R. Cong, S. Qiao, J. Liu, J. Mi, W. Yu, B. Liang, G. Fu, C. Pan, S. Wang, Adv. Sci. 2018, 5, 1700502.

[51]

S. Liu, X. Xie, H. Wang, Opt. Express 2014, 22, 11627.

[52]

M. Javadi, M. Gholami, H. Torbatiyan, Y. Abdi, Appl. Phys. Lett. 2018, 112, 113302.

[53]

Z. Zhang, S. Qiao, Y. Wang, Z. Li, S. Wang, G. Fu, IEEE Trans. Electron. Devices 2019, 66, 3887.

[54]

S. Qiao, B. Zhang, K. Feng, R. Cong, W. Yu, G. Fu, S. Wang, ACS Appl. Mater. Interfaces 2017, 9, 18377.

[55]

H. Nguyen, A. Riduan Md Foisal, T. Nguyen, T. Dinh, E. W. Streed, N.-T. Nguyen, D. V. Dao, J. Phys. D Appl. Phys. 2021, 54, 265101.

[56]

E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes, Sens. Actuators A 1996, 51, 135.

[57]

J. Henry, J. Livingstone, Adv. Mater. 2001, 13, 1023.

[58]

N. Tabatabaie, M.-H. Meynadier, R. E. Nahory, J. P. Harbison, L. T. Florez, Appl. Phys. Lett. 1989, 55, 792.

[59]

C. Qi, H. Wang, Appl. Phys. Lett. 2010,

[60]

R. Martins, E. Fortunato, Rev. Sci. Instrum. 1995, 66, 2927.

[61]

Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, L. Zhang, X. Li, C. Shan, Adv. Mater. 2021, 33, 2001367.

[62]

H. Nakayama, P. Hacke, M. Khan, Jpn. J. Appl. Phys. 1996, 35, 282.

[63]

M. Siva Pratap Reddy, A. Bengi, V. Rajagopal Reddy, J.-S. Jang, Superlattice. Microst. 2015, 86, 157.

[64]

R. Feng, L. Hu, Y. Zhang, M. Zaheer, Z.-J. Qiu, C. Cong, Q. Nie, Y. Qin, R. Liu, Nanophotonics 2018, 7, 1563.

[65]

T.-H. Nguyen, T. Nguyen, A. R. M. Foisal, T. A. Pham, T. Dinh, H.-Q. Nguyen, E. W. Streed, T.-H. Vu, J. Fastier-Wooller, P. G. Duran, V. T. Dau, N.-T. Nguyen, D. V. Dao, ACS Appl. Electron. Mater. 2022, 4, 768.

[66]

A. R. M. Foisal, A. Qamar, T. Nguyen, T. Dinh, H. P. Phan, H. Nguyen, P. G. Duran, E. W. Streed, D. V. Dao, Nano Energy 2021, 79, 105494.

[67]

F. Yang, Z. Zheng, Y. He, P. Liu, G. Yang, Adv. Funct. Mater. 2021, 31, 2104254.

[68]

M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433.

[69]

L. F. Thompson, An Introduction to Lithography, American Chemical Society, Washington, DC, USA 1983.

[70]

P. J. Kelly, R. D. Arnell, Vacuum 2000, 56, 159.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/