Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma

Zhiming Liang , Tianyi Li , Holden Chi , Joseph Ziegelbauer , Kai Sun , Ming Wang , Wei Zhang , Tuo Liu , Yang-Tse Cheng , Zonghai Chen , Xiaohong Gayden , Chunmei Ban

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12503

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12503 DOI: 10.1002/eem2.12503
RESEARCH ARTICLE

Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma

Author information +
History +
PDF

Abstract

Slurry casting has been used to fabricate lithium-ion battery electrodes for decades, which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering. This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials, enabling solvent-free manufacturing electrodes with any electrochemistry of choice. The cold-plasma-coating technique enables fabricating electrodes with thickness (>200 μm), high mass loading (>30 mg cm-2), high peel strength, and the ability to print lithium-ion batteries in an arbitrary geometry. This crosscutting, chemistry agnostic, platform technology would increase energy density, eliminate the use of solvents, vacuum drying, and calendering processes during production, and reduce manufacturing cost for current and future cell designs. Here, lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique. It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes. Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6% over 500 cycles. For the highly conductive cathode material lithium cobalt oxide, an areal capacity of 4.2 mAh cm-2 at 0.2 C is attained. We anticipate that this new, highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.

Keywords

cold plasma deposition / lithium-ion battery / solvent-free manufacturing

Cite this article

Download citation ▾
Zhiming Liang, Tianyi Li, Holden Chi, Joseph Ziegelbauer, Kai Sun, Ming Wang, Wei Zhang, Tuo Liu, Yang-Tse Cheng, Zonghai Chen, Xiaohong Gayden, Chunmei Ban. Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma. Energy & Environmental Materials, 2024, 7(1): 12503 DOI:10.1002/eem2.12503

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Barré, B. Deguilhem, S. Grolleau, M. G erard, F. Suard, D. Riu, J. Power Sources 2013, 241, 680.

[2]

Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z. D. Deng, J. Xiao, J. Power Sources 2015, 286, 330.

[3]

M. S. Whittingham, Chem. Rev. 2004, 104, 4271.

[4]

M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.

[5]

G. E. Blomgren, J. Electrochem. Soc. 2016, 164, A5019.

[6]

W. B. Hawley, J. Li, J. Energy Storage 2019, 25, 100862.

[7]

D. L. Wood III, J. Li, C. Daniel, J. Power Sources 2015, 275, 234.

[8]

B. Ludwig, Z. Zheng, W. Shou, Y. Wang, H. Pan, Sci. Rep. 2016, 6, 23150.

[9]

J. Liu, B. Ludwig, Y. Liu, Z. Zheng, F. Wang, M. Tang, J. Wang, J. Wang, H. Pan, Y. Wang, Adv. Mater. Technol. 2017, 2, 1700106.

[10]

S. N. Bryntesen, A. H. Strømman, I. Tolstorebrov, P. R. Shearing, J. J. Lamb, O. Stokke Burheim, Energies 2021, 14, 1406.

[11]

A. M. Boyce, D. J. Cumming, C. Huang, S. P. Zankowski, P. S. Grant, D. J. L. Brett, P. R. Shearing, ACS Nano 2021, 15, 18624.

[12]

Y. Liu, R. Zhang, J. Wang, Y. Wang, iScience 2021, 24, 102332.

[13]

A. Manthiram, ACS Cent. Sci. 2017, 3, 1063.

[14]

C. Liu, X. Cheng, B. Li, Z. Chen, S. Mi, C. Lao, Materials 2017, 10, 934.

[15]

I. Ben-Barak, Y. Kamir, S. Menkin, M. Goor, I. Shekhtman, T. Ripenbein, E. Galun, D. Golodnitsky, E. Peled, J. Electrochem. Soc. 2018, 166, A5059.

[16]

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, J. A. Lewis, Adv. Mater. 2013, 25, 4539.

[17]

H. Mazor, D. Golodnitsky, L. Burstein, A. Gladkich, E. Peled, J. Power Sources 2012, 198, 264.

[18]

J. I. Hur, L. C. Smith, B. Dunn, Joule 2018, 2, 1187.

[19]

L. Ye, K. Wen, Z. Zhang, F. Yang, Y. Liang, W. Lv, Y. Lin, J. Gu, J. H. Dickerson, W. He, Adv. Energy Mater. 2016, 6, 1502018.

[20]

J. Wu, Z. Ju, X. Zhang, C. Quilty, K. J. Takeuchi, D. C. Bock, A. C. Marschilok, E. S. Takeuchi, G. Yu, ACS Nano 2021, 15, 19109.

[21]

Z. Du, C. J. Janke, J. Li, C. Daniel, D. L. Wood, J. Electrochem. Soc. 2016, 163, A2776.

[22]

S. H. Lee, C. Johnston, P. S. Grant, ACS Appl. Mater. Interfaces 2019, 11, 37859.

[23]

Y. Bao, Y. Liu, Y. Kuang, D. Fang, T. Li, Energy Storage Mater. 2020, 33, 55.

[24]

S. Shiraki, H. Oki, Y. Takagi, T. Suzuki, A. Kumatani, R. Shimizu, M. Haruta, T. Ohsawa, Y. Sato, Y. Ikuhara, T. Hitosugi, J. Power Sources 2014, 267, 881.

[25]

B. Vertruyen, N. Eshraghi, C. Piffet, J. Bodart, A. Mahmoud, F. Boschini, Materials 2018, 11, 1076.

[26]

D. J. Kirsch, S. D. Lacey, Y. Kuang, G. Pastel, H. Xie, J. W. Connell, Y. Lin, L. Hu, ACS Appl. Energy Mater. 2019, 2, 2990.

[27]

G. Schälicke, I. Landwehr, A. Dinter, K.-H. Pettinger, W. Haselrieder, A. Kwade, Energy Technol. 2020, 8, 1900309.

[28]

M. Al-Shroofy, Q. Zhang, J. Xu, T. Chen, A. P. Kaur, Y.-T. Cheng, J. Power Sources 2017, 352, 187.

[29]

W. Wang, J. Hu, Y. Wang, Y.-T. Cheng, J. Electrochem. Soc. 2019, 166, A2151.

[30]

G. Liu, H. Zheng, X. Song, V. S. Battaglia, J. Electrochem. Soc. 2012, 159, A214.

[31]

H. Chen, M. Ling, L. Hencz, H. Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Chem. Rev. 2018, 118, 8936.

[32]

W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006.

[33]

X.-Y. Qiu, Q.-C. Zhuang, Q.-Q. Zhang, R. Cao, P.-Z. Ying, Y.-H. Qiang, S.-G. Sun, Phys. Chem. Chem. Phys. 2012, 14, 2617.

[34]

M. Turner, in Cold Plasma in Food and Agriculture (Eds: N. N. Misra, O. Schlüter, P. J. Cullen), Academic Press, San Diego, CA 2016.

[35]

F. L. Tabares, I. Junkar, Molecules 2021, 26, 1903.

[36]

R. Thirumdas, C. Sarangapani, U. S. Annapure, Food Biophysics. 2015,

[37]

C. Mandolfino, Surf. Coat. Technol. 2019, 366, 331.

[38]

P. Dimitrakellis, E. Gogolides, Adv. Colloid Interf. Sci. 2018,

[39]

S. Dong, P. Guo, Y. Chen, G.-Y. Chen, H. Ji, Y. Ran, S.-H. Li, Y. Chen, Ind. Crop. Prod. 2018, 115, 124.

[40]

G. Hong, N. Li, H. Yang, H.-S. Chen, W. Song, D. Fang, Int. J. Adhes. Adhes. 2021, 108, 102870.

[41]

J. Chen, J. Liu, Y. Qi, T. Sun, X. Li, J. Electrochem. Soc. 2013, 160, A1502.

[42]

F. Zou, A. Manthiram, Adv. Energy Mater. 2020, 10, 2002508.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/