Low-Enthalpy and High-Entropy Polymer Electrolytes for Li-Metal Battery
Haitao Zhang , Yuchen Wang , Junfeng Huang , Wen Li , Xiankan Zeng , Aili Jia , Hongzhi Peng , Xiong Zhang , Weiqing Yang
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12514
Low-Enthalpy and High-Entropy Polymer Electrolytes for Li-Metal Battery
Ionic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance. Here we demonstrate the low-enthalpy and high-entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium-ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm-2 can be delivered by LEHE electrolytes. Also, the as-developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g-1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium-ion transference number (0.57 vs 0.19) and a significant decline in ion-transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long-term cycling stability and excellent rate-capability of lithium-metal batteries.
charge concentration gradient / lithium dendrites / lithium-metal battery / low-enthalpy and high-entropy / polymer electrolyte
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |