Hierarchical CoFe@N-Doped Carbon Decorated Wood Carbon as Bifunctional Cathode in Wearable Zn-Air Battery

Kelong Ao , Xiangyang Zhang , Renat R. Nazmutdinov , Di Wang , Jihong Shi , Xian Yue , Jianguo Sun , Wolfgang Schmickler , Walid A. Daoud

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12499

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12499 DOI: 10.1002/eem2.12499
RESEARCH ARTICLE

Hierarchical CoFe@N-Doped Carbon Decorated Wood Carbon as Bifunctional Cathode in Wearable Zn-Air Battery

Author information +
History +
PDF

Abstract

Rechargeable Zn-air batteries (ZAB) have drawn extensive attention due to their eco-friendliness and safety. However, the lack of high-performance and low-cost oxygen redox reactions (OER and ORR) catalysts has become one of the main stumbling blocks in their development. Herein, we successfully fabricate a CoFe nanobubble encapsulated in nitrogen-doped carbon nanocage on wood carbon support (CoFe@NC/WC) via pyrolysis of a novel Prussian blue analog (PBA)/spruce precursor. The hierarchical CoFe@NC/WC catalyst exhibits an excellent potential difference of 0.74 V between the OER potential at 10 mA cm-2 and half-wave potential of ORR in 0.1 M KOH, comparable to recently reported preeminent electrocatalysts. Further, CoFe@NC/WC shows outstanding electrochemical performance in liquid ZAB, with a peak power density of 138.9 mW cm-2 and a specific capacity of 763.5 mAh g-1. More importantly, a bacterial cellulose nanofiber reinforced polyacrylic acid (BC-PAA) hydrogel electrolyte shows ultrahigh tensile-breaking stress of 1.58 MPa. In conjunction with the as-prepared CoFe@NC/WC catalyst, BC-PAA-based wearable ZAB displays impressive rechargeability and foldability, and can power portable electronics, such as electronic timer and mobile phone, in bent states. This work provides a new approach toward high-activity and low-cost catalysts for ZAB.

Keywords

biomass-based catalyst / DFT computation / hydrogel electrolyte / oxygen redox reactions / wearable Zn-air battery

Cite this article

Download citation ▾
Kelong Ao, Xiangyang Zhang, Renat R. Nazmutdinov, Di Wang, Jihong Shi, Xian Yue, Jianguo Sun, Wolfgang Schmickler, Walid A. Daoud. Hierarchical CoFe@N-Doped Carbon Decorated Wood Carbon as Bifunctional Cathode in Wearable Zn-Air Battery. Energy & Environmental Materials, 2024, 7(1): 12499 DOI:10.1002/eem2.12499

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang, B. Zhang, L. Song, J. Shang, Y. Yang, C. Ma, L. Zheng, Y. Han, W. Huang, Nano Lett. 2021, 21, 2255.

[2]

D. Lyu, S. Yao, A. Ali, Z. Q. Tian, P. Tsiakaras, P. K. Shen, Adv. Energy Mater. 2021, 11, 2101249.

[3]

Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin, X. Fang, Adv. Energy Mater. 2020, 10, 1903854.

[4]

X. F. Lu, Y. Chen, S. Wang, S. Gao, X. W. D. Lou, Adv. Mater. 2019, 31, e1902339.

[5]

C. X. Zhao, J. N. Liu, J. Wang, D. Ren, B. Q. Li, Q. Zhang, Chem. Soc. Rev. 2021, 50, 7745.

[6]

K. Ao, J. Shi, X. Zhang, W. A. Daoud, J. Power Sources 2022, 521, 230918.

[7]

X. Song, S. Song, D. Wang, H. Zhang, Small Methods 2021, 5, 2001000.

[8]

L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2020, 13, 3439.

[9]

Y. Qian, Y. Li, Z. Pan, J. Tian, N. Lin, Y. Qian, Adv. Funct. Mater. 2021, 31, 2103115.

[10]

C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song, W. Luo, Y. Wang, Y. Yao, G. Pastel, J. Xie, L. Hu, Adv. Energy Mater. 2017, 7, 1700595.

[11]

X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao, X. Chi, X. Zhao, L. Li, X. Lu, K. Leng, C. Liu, W. Liu, W. Tang, K. P. Loh, Adv. Mater. 2019, 31, e1900341.

[12]

W. Gan, L. Wu, Y. Wang, H. Gao, L. Gao, S. Xiao, J. Liu, Y. Xie, T. Li, J. Li, Adv. Funct. Mater. 2021, 31, 2010951.

[13]

L. Deng, Y. Liu, G. Zhao, J. Chen, S. He, Y. Zhu, B. Chai, Z. Ren, J. Electroanal. Chem. 2019, 832, 459.

[14]

B. Y. Xia, J.-Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He, Z. Wang, W. Fang, S. Zaman, Y. Su, S. Ding, Energy Environ. Sci. 2021, 14, 365.

[15]

X. Hao, Z. Jiang, B. Zhang, X. Tian, C. Song, L. Wang, T. Maiyalagan, X. Hao, Z. J. Jiang, Adv. Sci. 2021, 8, 2004572.

[16]

F. Pan, Z. Li, Z. Yang, Q. Ma, M. Wang, H. Wang, M. Olszta, G. Wang, Z. Feng, Y. Du, Y. Yang, Adv. Energy Mater. 2020, 11, 2002204.

[17]

C. Li, M. Wu, R. Liu, Appl. Catal. B Environ. 2019, 244, 150.

[18]

K. Wang, Y. Jin, S. Sun, Y. Huang, J. Peng, J. Luo, Q. Zhang, Y. Qiu, C. Fang, J. Han, ACS Omega 2017, 2, 1687.

[19]

Y. Li, L. Mu, Y.-S. Hu, H. Li, L. Chen, X. Huang, Energy Storage Mater. 2016, 2, 139.

[20]

M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge, J. Zhu, Y. Wang, X. Zhao, Z. Chen, Adv. Mater. 2020, 32, 2004900.

[21]

Y. He, H. Guo, S. Hwang, X. Yang, Z. He, J. Braaten, S. Karakalos, W. Shan, M. Wang, H. Zhou, Z. Feng, K. L. More, G. Wang, D. Su, D. A. Cullen, L. Fei, S. Litster, G. Wu, Adv. Mater. 2020, 32, 2003577.

[22]

T. Tang, W. J. Jiang, X. Z. Liu, J. Deng, S. Niu, B. Wang, S. F. Jin, Q. Zhang, L. Gu, J. S. Hu, L. J. Wan, J. Am. Chem. Soc. 2020, 142, 7116.

[23]

T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang, M. Liu, Adv. Funct. Mater. 2020, 30, 2003407.

[24]

X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou, Z. Zhang, H. Dou, L. Zhao, X. Sui, J. Cai, Y. Zhang, B. Liu, Y. Hu, A. Yu, S. H. Sun, Z. Wang, Z. Chen, Adv. Funct. Mater. 2020, 31, 2008085.

[25]

D. Liang, H. Zhang, X. Ma, S. Liu, J. Mao, H. Fang, J. Yu, Z. Guo, T. Huang, Mater. Today Energy 2020, 17, 100433.

[26]

K. Ao, D. Li, Y. Yao, P. Lv, Y. Cai, Q. Wei, Electrochim. Acta 2018, 264, 157.

[27]

L. Zhuang, Y. Jia, H. Liu, Z. Li, M. Li, L. Zhang, X. Wang, D. Yang, Z. Zhu, X. Yao, Angew. Chem. Int. Ed. 2020, 59, 14664.

[28]

S. S. Shinde, J. Y. Jung, N. K. Wagh, C. H. Lee, D.-H. Kim, S.-H. Kim, S. U. Lee, J.-H. Lee, Nat. Energy 2021, 6, 592.

[29]

Z. Han, Q. Hu, Z. Cheng, G. Li, X. Huang, Z. Wang, H. Yang, X. Ren, Q. Zhang, J. Liu, C. He, Adv. Funct. Mater. 2020, 30, 2000154.

[30]

Y. Jiang, Y. P. Deng, R. Liang, J. Fu, D. Luo, G. Liu, J. Li, Z. Zhang, Y. Hu, Z. Chen, Adv. Energy Mater. 2019, 9, 1900911.

[31]

D. Xie, D. Yu, Y. Hao, S. Han, G. Li, X. Wu, F. Hu, L. Li, H. Y. Chen, Y. F. Liao, S. Peng, Small 2021, 17, 2007239.

[32]

Y. Jiang, Y. P. Deng, R. Liang, N. Chen, G. King, A. Yu, Z. Chen, J. Am. Chem. Soc. 2022, 144, 4783.

[33]

X. Wu, C. Tang, Y. Cheng, X. Min, S. P. Jiang, S. Wang, Chem. Eur. J. 2020, 26, 3906.

[34]

M. Fan, Q. Yuan, Y. Zhao, Z. Wang, A. Wang, Y. Liu, K. Sun, L. Wang, J. Wu, J. Jiang, Adv. Mater. 2022, 34, 2107040.

[35]

A. Govender, D. Curulla Ferré, J. Niemantsverdriet, ChemPhysChem 2012, 13, 1583.

[36]

A. Ignaczak, R. Nazmutdinov, A. Goduljan, L. Moreira de Campos Pinto, F. Juarez, P. Quaino, E. Santos, W. Schmickler, Nano Energy 2016, 26, 558.

[37]

L. M. Pinto, P. Quaino, M. D. Arce, E. Santos, W. Schmickler, Chem- PhysChem 2014, 15, 2003.

[38]

S. Zhou, X. Yang, W. Pei, N. Liu, J. Zhao, Nanoscale 2018, 10, 10876.

[39]

Y. Wang, D. Wang, Y. Li, SmartMat 2021, 2, 56.

[40]

M. D. Bronshtein, R. R. Nazmutdinov, W. Schmickler, Chem. Phys. Lett. 2004, 399, 307.

[41]

S. A. Kislenko, S. V. Pavlov, R. R. Nazmutdinov, V. A. Kislenko, P. M. Chekushkin, Phys. Chem. Chem. Phys. 2021, 23, 22984.

[42]

Y. Liu, K. Sun, X. Cui, B. Li, J. Jiang, ACS Sustain. Chem. Eng. 2020, 8, 2981.

[43]

J. Sun, X. Qiu, Z. Wang, Z. Peng, L. Jiang, G. Li, H. Wang, H. Liu, Chem- CatChem 2021, 13, 2474.

[44]

K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, Adv. Mater. 2020, 32, 2002292.

[45]

L. Yan, Y. Xu, P. Chen, S. Zhang, H. Jiang, L. Yang, Y. Wang, L. Zhang, J. Shen, X. Zhao, L. Wang, Adv. Mater. 2020, 32, e2003313.

[46]

L. Liu, X. Zhang, F. Yan, B. Geng, C. Zhu, Y. Chen, J. Mater. Chem. A 2020, 8, 18162.

[47]

X. Li, L. Yuan, R. Liu, H. He, J. Hao, Y. Lu, Y. Wang, G. Liang, G. Yuan, Z. Guo, Adv. Energy Mater. 2021, 11, 2003010.

[48]

L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo, G. Liang, N. Li, H. Zhang, J. A. Zapien, C. Zhi, Adv. Energy Mater. 2019, 9, 1803046.

[49]

R. L. Oliveira, J. G. Vieira, H. S. Barud, R. M. N. Assunção, G. Rodrigues Filho, S. J. L. Ribeiro, Y. Messadeqq, J. Braz. Chem. Soc. 2015, 26, 1861.

[50]

W. Li, F. Li, H. Yang, X. Wu, P. Zhang, Y. Shan, L. Sun, Nat. Commun. 2019, 10, 5074.

[51]

T. Placido, L. Tognaccini, B. D. Howes, A. Montrone, V. Laquintana, R. Comparelli, M. L. Curri, G. Smulevich, A. Agostiano, ACS Omega 2018, 3, 4959.

[52]

J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, Z. Chen, Energy Environ. Sci. 2016, 9, 663.

[53]

Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu, C. Zhong, Adv. Mater. 2020, 32, 1908127.

[54]

Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W. C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 5422.

[55]

G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong, G. Wang, P. Zhang, M. Yu, E. Zschech, M. Chen, J. Zhang, X. Feng, Energ. Environ. Sci. 2020, 13, 2849.

RIGHTS & PERMISSIONS

2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/