Hierarchical CoFe@N-Doped Carbon Decorated Wood Carbon as Bifunctional Cathode in Wearable Zn-Air Battery
Kelong Ao , Xiangyang Zhang , Renat R. Nazmutdinov , Di Wang , Jihong Shi , Xian Yue , Jianguo Sun , Wolfgang Schmickler , Walid A. Daoud
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12499
Hierarchical CoFe@N-Doped Carbon Decorated Wood Carbon as Bifunctional Cathode in Wearable Zn-Air Battery
Rechargeable Zn-air batteries (ZAB) have drawn extensive attention due to their eco-friendliness and safety. However, the lack of high-performance and low-cost oxygen redox reactions (OER and ORR) catalysts has become one of the main stumbling blocks in their development. Herein, we successfully fabricate a CoFe nanobubble encapsulated in nitrogen-doped carbon nanocage on wood carbon support (CoFe@NC/WC) via pyrolysis of a novel Prussian blue analog (PBA)/spruce precursor. The hierarchical CoFe@NC/WC catalyst exhibits an excellent potential difference of 0.74 V between the OER potential at 10 mA cm-2 and half-wave potential of ORR in 0.1 M KOH, comparable to recently reported preeminent electrocatalysts. Further, CoFe@NC/WC shows outstanding electrochemical performance in liquid ZAB, with a peak power density of 138.9 mW cm-2 and a specific capacity of 763.5 mAh g-1. More importantly, a bacterial cellulose nanofiber reinforced polyacrylic acid (BC-PAA) hydrogel electrolyte shows ultrahigh tensile-breaking stress of 1.58 MPa. In conjunction with the as-prepared CoFe@NC/WC catalyst, BC-PAA-based wearable ZAB displays impressive rechargeability and foldability, and can power portable electronics, such as electronic timer and mobile phone, in bent states. This work provides a new approach toward high-activity and low-cost catalysts for ZAB.
biomass-based catalyst / DFT computation / hydrogel electrolyte / oxygen redox reactions / wearable Zn-air battery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |