Synergetic Control of Li+ Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
Yanan Li, Shunchao Ma, Yuehua Zhao, Silin Chen, Tingting Xiao, Hongxing Yin, Huiyu Song, Xiumei Pan, Lina Cong, Haiming Xie
Synergetic Control of Li+ Transport Ability and Solid Electrolyte Interphase by Boron-Rich Hexagonal Skeleton Structured All-Solid-State Polymer Electrolyte
High Li+ transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li+. However, such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase (SEI) formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition. Herein, a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte (BSPE+10% LiBOB) with regulated intermolecular interaction is proposed to trade off a high Li+ transference number against stable SEI properties. The Li+ transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker (BC) addition. More intriguingly, for the first time, the experiments combined with theoretical calculation results reveal that BOB− anions have stronger interaction with B atoms in polymer chain than TFSI−, which significantly induce the TFSI− decomposition and consequently increase the amount of LiF and Li3N in the SEI layer. Eventually, a LiFePO4|BSPE+10% LiBOB|Li cell retains 96.7% after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%. BSPE+10% LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells. This study blazes a new trail in controlling the Li+ transport ability and SEI properties, synergistically.
all-solid-state electrolyte / boron-rich polymer / lithium metal batteries / lithium-ion transference number / solid electrolyte interphase layer
[1] |
D. Abdul , J. Wenqi , A. Tanveer , Renew. Energy 2022, 201, 418.
|
[2] |
N. Zhang , Y. Lu , Z. H. Ouderji , Z. Yu , Energy 2023, 273, 127101.
|
[3] |
J. B. Goodenough , Y. Kim , Chem. Mater. 2009, 22, 587.
|
[4] |
X. Zhang , Y. Yang , Z. Zhou , Chem. Soc. Rev. 2020, 49, 3040.
|
[5] |
J. Liu , Z. Bao , Y. Cui , E. J. Dufek , J. B. Goodenough , P. Khalifah , Q. Li , B. Y. Liaw , P. Liu , A. Manthiram , Y. S. Meng , V. R. Subramanian , M. F. Toney , V. V. Viswanathan , M. S. Whittingham , J. Xiao , W. Xu , J. Yang , X.-Q. Yang , J.-G. Zhang , Nat. Energy 2019, 4, 180.
|
[6] |
W. Teng , J. Wu , Q. Liang , J. Deng , Y. Xu , Q. Liu , B. Wang , T. Ma , D. Nan , J. Liu , B. Li , Q. Weng , X. Yu , Energy Environ. Mater. 2023,
CrossRef
Google scholar
|
[7] |
J. W. Choi , D. Aurbach , Nat. Rev. Mater. 2016, 1, 2058.
|
[8] |
Z. A. Ghazi , Z. Sun , C. Sun , F. Qi , B. An , F. Li , H. M. Cheng , Small 2019, 15, 1900687.
|
[9] |
F. Hao , A. Verma , P. P. Mukherjee , J. Mater. Chem. A 2018, 6, 19664.
|
[10] |
D. Lin , Y. Liu , Y. Cui , Nat. Nanotechnol. 2017, 12, 194.
|
[11] |
Y. Pang , J. Pan , J. Yang , S. Zheng , C. Wang , Electrochem. Energy Rev. 2021, 4, 169.
|
[12] |
L. Fan , S. Wei , S. Li , Q. Li , Y. Lu , Adv. Energy Mater. 2018, 8, 1702657.
|
[13] |
A. Manthiram , X. Yu , S. Wang , Nat. Rev. Mater. 2017, 2, 2058.
|
[14] |
T. Hou , Y. Qian , D. Li , B. Xu , Z. Huang , X. Liu , H. Wang , B. Jiang , H. Xu , Y. Huang , Energy Environ. Mater. 2022,
CrossRef
Google scholar
|
[15] |
S.-H. Kim , K.-H. Choi , S.-J. Cho , E.-H. Kil , S.-Y. Lee , J. Mater. Chem. A 2013, 1, 4949.
|
[16] |
G. Li , X. Guan , A. Wang , C. Wang , J. Luo , Energy Stor. Mater. 2020, 24, 574.
|
[17] |
D. Xu , B. Wang , Q. Wang , S. Gu , W. Li , J. Jin , C. Chen , Z. Wen , ACS Appl. Mater. Interfaces 2018, 10, 17809.
|
[18] |
Q. Meng , S. Lou , B. Shen , X. Wan , X. Xiao , Y. Ma , H. Huo , G. Yin , Electrochem. Energy Rev. 2022, 5, 30.
|
[19] |
P. Jaumaux , J. Wu , D. Shanmukaraj , Y. Wang , D. Zhou , B. Sun , F. Kang , B. Li , M. Armand , G. Wang , Adv. Funct. Mater. 2020, 31, 2008644.
|
[20] |
Y. Yamada , K. Furukawa , K. Sodeyama , K. Kikuchi , M. Yaegashi , Y. Tateyama , A. Yamada , J. Am. Chem. Soc. 2014, 136, 5039.
|
[21] |
Y. F. Liang , S. J. Deng , Y. Xia , X. L. Wang , X. H. Xia , J. B. Wu , C. D. Gu , J. P. Tu , Mater. Res. Bull. 2018, 102, 412.
|
[22] |
Q. Pan , D. M. Smith , H. Qi , S. Wang , C. Y. Li , Adv. Mater. 2015, 27, 5995.
|
[23] |
V. Di Noto , S. Lavina , G. A. Giffin , E. Negro , B. Scrosati , Electrochim. Acta 2011, 57, 4.
|
[24] |
X. Yang , M. Jiang , X. Gao , D. Bao , Q. Sun , N. Holmes , H. Duan , S. Mukherjee , K. Adair , C. Zhao , J. Liang , W. Li , J. Li , Y. Liu , H. Huang , L. Zhang , S. Lu , Q. Lu , R. Li , C. V. Singh , X. Sun , Energ. Environ. Sci. 2020, 13, 1318.
|
[25] |
A. Varzi , R. Raccichini , S. Passerini , B. Scrosati , J. Mater. Chem. A 2016, 4, 17251.
|
[26] |
X. Y. Yan , Q. Y. Guo , Z. Lin , X. Y. Liu , J. Yuan , J. Wang , H. Wang , Y. Liu , Z. Su , T. Liu , J. Huang , R. Zhang , Y. Wang , M. Huang , W. Zhang , S. Z. D. Cheng , Angew. Chem. Int. Ed. Engl. 2021, 60, 2024.
|
[27] |
X. Chen , X. Yin , J. Aslam , W. Sun , Y. Wang , Electrochem. Energy Rev. 2022, 5, 12.
|
[28] |
Y. M. Jeon , S. Kim , M. Lee , W. B. Lee , J. H. Park , Adv. Energy Mater. 2020, 10, 2003114.
|
[29] |
X. Zhan , J. Zhang , M. Liu , J. Lu , Q. Zhang , F. Chen , ACS Appl. Energy Mater. 2019, 2, 1685.
|
[30] |
X. Zuo , X.-M. Liu , F. Cai , H. Yang , X.-D. Shen , G. Liu , J. Mater. Chem. 2012, 22, 22265.
|
[31] |
K. M. Diederichsen , E. J. McShane , B. D. McCloskey , ACS Energy Lett. 2017, 2, 2563.
|
[32] |
J. Pitawala , A. Martinelli , P. Johansson , P. Jacobsson , A. Matic , J. Non Cryst. Solids 2015, 407, 318.
|
[33] |
H. Yoon , A. S. Best , M. Forsyth , D. R. MacFarlane , P. C. Howlett , Phys. Chem. Chem. Phys. 2015, 17, 4656.
|
[34] |
E. P. Kamphaus , S. Angarita-Gomez , X. Qin , M. Shao , M. Engelhard , K. T. Mueller , V. Murugesan , P. B. Balbuena , ACS Appl. Mater. Interfaces 2019, 11, 31467.
|
[35] |
J. Wu , S. Weng , X. Zhang , W. Sun , W. Wu , Q. Wang , X. Yu , L. Chen , Z. Wang , X. Wang , Small 2023,
CrossRef
Google scholar
|
[36] |
Z. Hu , F. Xian , Z. Guo , C. Lu , X. Du , X. Cheng , S. Zhang , S. Dong , G. Cui , L. Chen , Chem. Mater. 2020, 32, 3405.
|
[37] |
T. D. Pham , A. Bin Faheem , K. K. Lee , Small 2021, 17, e2103375.
|
[38] |
Z. Lv , Q. Zhou , S. Zhang , S. Dong , Q. Wang , L. Huang , K. Chen , G. Cui , Energy Stor. Mater. 2021, 37, 215.
|
[39] |
I. A. Shkrob , Y. Zhu , T. W. Marin , D. P. Abraham , J. Phys. Chem. C 2013, 117, 23750.
|
[40] |
F. Wu , Q. Zhu , R. Chen , N. Chen , Y. Chen , L. Li , Nano Energy 2015, 13, 546.
|
[41] |
K. Dai , Y. Zheng , W. Wei , Adv. Funct. Mater. 2021, 31, 2008632.
|
[42] |
S. Gupta , A. K. Gupta , B. K. Pandey , M. L. Verma , J. Mol. Model. 2021, 27, 155.
|
[43] |
H. Zheng , H. Xiang , F. Jiang , Y. Liu , Y. Sun , X. Liang , Y. Feng , Y. Yu , Adv. Energy Mater. 2020, 10, 2001440.
|
[44] |
Y. Gao , Z. Yan , J. L. Gray , X. He , D. Wang , T. Chen , Q. Huang , Y. C. Li , H. Wang , S. H. Kim , T. E. Mallouk , D. Wang , Nat. Mater. 2019, 18, 384.
|
[45] |
H. Wu , Y. Xu , X. Ren , B. Liu , M. H. Engelhard , M. S. Ding , P. Z. El-Khoury , L. Zhang , Q. Li , K. Xu , C. Wang , J. G. Zhang , W. Xu , Adv. Energy Mater. 2019, 9, 1902108.
|
/
〈 | 〉 |