Nano-Ni-Induced Electronic Modulation of MoS2 Nanosheets Enables Energy-Saving H2 Production and Sulfide Degradation
Fan Liu, Xinghong Cai, Yang Tang, Wenqian Liu, Qianwei Chen, Peixin Dong, Maowen Xu, Yangyang Tan, Shujuan Bao
Nano-Ni-Induced Electronic Modulation of MoS2 Nanosheets Enables Energy-Saving H2 Production and Sulfide Degradation
Electrocatalytic hydrogen evolution and sulfion (S2−) recycling are promising strategies for boosting H2 production and removing environmental pollutants. Here, a nano-Ni-functionalized molybdenum disulfide (MoS2) nanosheet was assembled on steel mesh (Ni-MoS2/SM) for use in sulfide oxidation reaction-assisted, energy-saving H2 production. Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS2 nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OHad, thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction. Meanwhile, the Ni/MoS2-based hydrogen evolution reaction + sulfide oxidation reaction system achieved nearly 100% hydrogen production efficiency and only consumed 61% less power per kWh than the oxygen evolution reaction + hydrogen evolution reaction system, which suggested our proposed Ni-MoS2 and novel hydrogen production system are promising for sustainable energy production.
hydrogen evolution reaction / low energy consumption / molybdenum disulfide / sulfide oxidation reaction
[1] |
T. Kou , S. Wang , Y. Li , ACS Mater. Lett. 2021, 3, 224.
|
[2] |
H. Zhou , F. Yu , Q. Zhu , J. Sun , F. Qin , L. Yu , J. Bao , Y. Yu , S. Chen , Z. Ren , Energy Environ. Sci. 2018, 11, 2858.
|
[3] |
K. Wu , K. Sun , S. Liu , W.-C. Cheong , Z. Chen , C. Zhang , Y. Pan , Y. Cheng , Z. Zhuang , X. Wei , Y. Wang , L. Zheng , Q. Zhang , D. Wang , Q. Peng , C. Chen , Y. Li , Nano Energy 2021, 80, 105467.
|
[4] |
Y. Zheng , Y. Jiao , A. Vasileff , S. Z. Qiao , Angew. Chem. Int. Ed. 2018, 57, 7568.
|
[5] |
C. Liang , P. Zou , A. Nairan , Y. Zhang , J. Liu , K. Liu , S. Hu , F. Kang , H. J. Fan , C. Yang , Energy Environ. Sci. 2020, 13, 86.
|
[6] |
G. Xiong , Y. Chen , Z. Zhou , F. Liu , X. Liu , L. Yang , Q. Liu , Y. Sang , H. Liu , X. Zhang , J. Jia , W. Zhou , Adv. Funct. Mater. 2021, 31, 2009580.
|
[7] |
W. Zhao , H. Xu , H. Luan , N. Chen , P. Gong , K. Yao , Y. Shen , Y. Shao , Adv. Energy Mater. 2021, 12, 2102372.
|
[8] |
F. Gong , M. Liu , L. Gong , S. Ye , Q. Jiang , G. Zeng , X. Zhang , Z. Peng , Y. Zhang , S. Fang , J. Liu , Adv. Funct. Mater. 2022, 32, 2202141.
|
[9] |
B. Zhao , J. Liu , X. Wang , C. Xu , P. Sui , R. Feng , L. Wang , J. Zhang , J.-L. Luo , X.-Z. Fu , Nano Energy 2021, 80, 105530.
|
[10] |
Y. Zhang , B. Zhou , Z. Wei , W. Zhou , D. Wang , J. Tian , T. Wang , S. Zhao , J. Liu , L. Tao , S. Wang , Adv. Mater. 2021, 33, e2104791.
|
[11] |
B. You , X. Liu , N. Jiang , Y. Sun , J. Am. Chem. Soc. 2016, 138, 13639.
|
[12] |
J. Du , D. Xiang , K. Zhou , L. Wang , J. Yu , H. Xia , L. Zhao , H. Liu , W. Zhou , Nano Energy 2022, 104, 107875.
|
[13] |
M. Zhang , J. Guan , Y. Tu , S. Chen , Y. Wang , S. Wang , L. Yu , C. Ma , D. Deng , X. Bao , Energy Environ. Sci. 2020, 13, 119.
|
[14] |
W. Ma , C. Xie , X. Wang , H. Wang , X. Jiang , H. Zhang , X. Guo , X. Zong , X. Li , C. Li , ACS Energy Lett. 2019, 5, 597.
|
[15] |
A. G. De Crisci , A. Moniri , Y. Xu , Int. J. Hydrog. Energy 2019, 44, 1299.
|
[16] |
N. Sergienko , E. Irtem , O. Gutierrez , J. Radjenovic , J. Hazard. Mater. 2019, 375, 19.
|
[17] |
E. Ntagia , E. Fiset , L. da Silva Lima , I. Pikaar , X. Zhang , A. W. Jeremiasse , A. Prevoteau , K. Rabaey , Water Res. 2019, 149, 111.
|
[18] |
R. Song , J. Han , M. Okugawa , R. Belosludov , T. Wada , J. Jiang , D. Wei , A. Kudo , Y. Tian , M. Chen , H. Kato , Nat. Commun. 2022, 13, 5157.
|
[19] |
Q. Sun , Y. Tong , P. Chen , B. Zhou , X. Dong , ACS Sustain. Chem. Eng. 2021, 9, 4206.
|
[20] |
B. Zhang , J. Liu , J. Wang , Y. Ruan , X. Jia , K. Xu , C. Chen , H. Wan , L. Miao , J. Jiang ,
|
[21] |
K. Lu , Y. Liu , F. Lin , I. A. Cordova , S. Gao , B. Li , B. Peng , H. Xu , J. Kaelin , D. Coliz , C. Wang , Y. Shao , Y. Cheng , J. Am. Chem. Soc. 2020, 142, 12613.
|
[22] |
R. Subbaraman , D. Tripkovic , D. Strmcnik , K. Chang , M. Uchimura , A. P. Paulikas , V. Stamenkovic , N. M. Markovic , Science 2011, 334, 1256.
|
[23] |
B. Mao , P. Sun , Y. Jiang , T. Meng , D. Guo , J. Qin , M. Cao , Angew. Chem. Int. Ed. 2020, 59, 15232.
|
[24] |
I. T. McCrum , M. T. M. Koper , Nat. Energy 2020, 5, 891.
|
[25] |
Y. Pei , J. Cheng , H. Zhong , Z. Pi , Y. Zhao , F. Jin , Green Chem. 2021, 23, 6975.
|
[26] |
S. Zhang , Q. Zhou , Z. Shen , X. Jin , Y. Zhang , M. Shi , J. Zhou , J. Liu , Z. Lu , Y. N. Zhou , H. Zhang , Adv. Funct. Mater. 2021, 31, 2101922.
|
[27] |
L. Yi , Y. Ji , P. Shao , J. Chen , J. Li , H. Li , K. Chen , X. Peng , Z. Wen , Angew. Chem. Int. Ed. 2021, 60, 21550.
|
[28] |
Z. Yin , X. Liu , S. Chen , T. Ma , Y. Li , Energy Environ. Mater. 2003, 6, e12310.
|
[29] |
Y. Sun , Y. Zang , W. Tian , X. Yu , J. Qi , L. Chen , X. Liu , H. Qiu , Energy Environ. Sci. 2022, 15, 1201.
|
[30] |
Y. Qian , J. Yu , Y. Zhang , F. Zhang , Y. Kang , C. Su , H. Shi , D. J. Kang , H. Pang , Small Methods 2022, 6, e2101186.
|
[31] |
M. S. Kim , D. T. Tran , T. H. Nguyen , V. A. Dinh , N. H. Kim , J. H. Lee , Energy Environ. Mater. 2022, 5, 1340.
|
[32] |
Z. Liu , K. Wang , Y. Li , S. Yuan , G. Huang , X. Li , N. Li , Appl. Catal. B Environ. 2022, 300, 120696.
|
[33] |
J. Cai , J. Yang , X. Xie , J. Ding , L. Liu , W. Tian , Y. Liu , Z. Tang , B. Liu , S. Lu , Energy Environ. Mater. 2023, 6, e12424.
|
[34] |
S. Xue , Z. Liu , C. Ma , H.-M. Cheng , W. Ren , Sci. Bull. 2020, 65, 123.
|
[35] |
X. Lu , M. Cai , Z. Zou , J. Huang , C. Xu , Chem. Commun. 2020, 56, 1729.
|
[36] |
M. Kim , M. A. R. Anjum , M. Choi , H. Y. Jeong , S. H. Choi , N. Park , J. S. Lee , Adv. Funct. Mater. 2020, 30, 2002536.
|
[37] |
Q. Zhou , J. Feng , X. Peng , L. Zhong , R. Sun , J. Energy Chem. 2020, 45, 45.
|
[38] |
Y. Tang , F. Liu , W. Liu , S. Mo , X. Li , D. Yang , Y. Liu , S.-J. Bao , Appl. Catal. B Environ. 2023, 321, 122081.
|
[39] |
T. Kou , S. Wang , R. Shi , T. Zhang , S. Chiovoloni , J. Q. Lu , W. Chen , M. A. Worsley , B. C. Wood , S. E. Baker , E. B. Duoss , R. Wu , C. Zhu , Y. Li , Adv. Energy Mater. 2020, 10, 2002955.
|
[40] |
L. Zhang , Z. Wang , J. Qiu , Adv. Mater. 2022, 34, e2109321.
|
[41] |
Y. Qi , Q. J. Li , Y. Wu , S. J. Bao , C. Li , Y. Chen , G. Wang , M. Xu , Nat. Commun. 2021, 12, 6347.
|
[42] |
Q. Ma , W. Zhong , G. Du , Y. Qi , S.-J. Bao , M. Xu , C. Li , ACS Appl. Mater. Interfaces 2021, 13, 11852.
|
[43] |
P. J. Stephens , F. J. Devlin , C. F. Chabalowski , M. J. Frisch , J. Phys. Chem. 1994, 98, 11623.
|
[44] |
S. J. Clark , M. D. Segall , C. J. Pickard , P. J. Hasnip , M. J. Probert , K. Refson , M. C. Payne , Z. Kristallogr. 2005, 220, 567.
|
[45] |
R. L. C. Akkermans , N. A. Spenley , S. H. Robertson , Mol. Simul. 2013, 39, 1153.
|
[46] |
B. Hammer , L. B. Hansen , J. K. Norskov , Phys. Rev. B 1999, 59, 7413.
|
[47] |
J. P. Perdew , K. Burke , M. Ernzerhof , Phys. Rev. Lett. 1996, 77, 3865.
|
[48] |
Q. Xu , J. Yu , J. Zhang , J. Zhang , G. Liu , Chem. Commun. 2015, 51, 7950.
|
/
〈 | 〉 |