Rational Design and Construction of a CdS QDs/InVO4 Atomic-Layer (110)/(110) Facet S-Scheme Heterojunction for Highly Efficient Photocatalytic Degradation of C2H4
Yuanpeng Dong, Peizhu Ji, Xinyue Xu, Rong Li, Yin Wang, Kevin Peter Homewood, Xiaohong Xia, Yun Gao, Xuxing Chen
Rational Design and Construction of a CdS QDs/InVO4 Atomic-Layer (110)/(110) Facet S-Scheme Heterojunction for Highly Efficient Photocatalytic Degradation of C2H4
Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance. However, how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge. Here, density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO4 atomic-layer (110)/(110) facet S-scheme heterojunction. Subsequently, a CdS quantum dots/InVO4 atomic-layer was synthesized by in-situ loading of CdS quantum dots with (110) facets onto the (110) facets of InVO4 atomic-layer. As a result of the deliberately constructed built-in electric field between the adjoining facets, we obtain a remarkably enhanced photocatalytic degradation rate for ethylene. This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO4. In-situ irradiated X-ray photoelectron spectroscopy, photoluminescence and time-resolved photoluminescence measurements were carried out. These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers, and results in the formation of S-scheme charge transfer pathways. The reaction mechanism of the photocatalytic C2H4 oxidation is investigated by in-situ electron paramagnetic resonance. This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.
CdS QDs / InVO4 atomic-layer / photocatalysis / S-scheme / volatile organic compounds
[1] |
C. T. Yang , G. Miao , Y. H. Pi , Q. B. Xia , J. L. Wu , Z. Li , J. Xiao , Chem. Eng. J. 2019, 370, 1128.
|
[2] |
L. L. Zhu , D. K. Shen , K. H. Luo , J. Hazard. Mater. 2020, 389, 122102.
|
[3] |
T. Inoue , A. Fujishima , S. Konishi , K. Honda , Nature 1979, 277, 637.
|
[4] |
X. B. Chen , S. H. Shen , L. J. Guo , S. S. Mao , Chem. Rev. 2010, 110, 6503.
|
[5] |
X. X. Chen , Y. P. Li , X. Y. Pan , D. Cortie , X. T. Huang , Z. G. Yi , Nat. Commun. 2016,
CrossRef
Google scholar
|
[6] |
X. Y. Pan , X. X. Chen , Z. G. Yi , Phys. Chem. Chem. Phys. 2016, 18, 31400.
|
[7] |
W. K. Jo , J. T. Kim , J. Hazard. Mater. 2009, 164, 360.
|
[8] |
X. Y. Yang , J. A. Koziel , Y. Laor , W. D. Zhu , J. Leeuwen , W. S. Jenks , S. J. Hoff , J. Zimmerman , S. C. Zhang , U. Ravid , R. Armon , Catalysts 2020, 10, 607.
|
[9] |
G. Y. Liu , H. Y. Xia , M. J. Yan , L. F. Song , H. Li , Y. H. Niu , Appl. Surf. Sci. 2022, 586, 152787.
|
[10] |
J. K. Li , C. P. Lv , X. H. Liu , Z. B. Jiao , N. Liu , Energy Environ. Mater. 2020, 4, 611.
|
[11] |
O. B. Gadzhiev , S. K. Ignatov , B. E. Krisyuk , A. V. Maiorov , S. Gangopadhyay , A. E. Masunov , J. Phys. Chem. A 2012, 116, 10420.
|
[12] |
N. Keller , M.-N. Ducamp , D. Robert , V. Keller , Chem. Rev. 2013, 133, 5029.
|
[13] |
B. Biale , R. E. Young , A. J. Olmstead , Plant Physiol. 1954, 29, 168.
|
[14] |
B. X. Hu , D. Sun , H. B. Pu , Q. Y. Wei , Trends Food Sci. Tech. 2019, 91, 66.
|
[15] |
F. Khosravi , M. Khosravi , E. Pourseyedi , J. Biol. Environ. Sci. 2015, 6, 350.
|
[16] |
X. L. Song , Y. Y. Li , Z. D. Wei , S. Y. Ye , D. Dionysiou , Chem. Eng. J. 2017, 314, 443.
|
[17] |
M. R. Hoffmann , S. T. Martin , W. Choi , D. W. Bahnemann , Chem Rev 1995, 95, 69.
|
[18] |
X. X. Chen , X. T. Huang , Z. G. Yi , Chem. Eur. J. 2014, 20, 17590.
|
[19] |
X. X. Chen , R. Li , X. Y. Pan , X. T. Huang , Z. G. Yi , Chem. Eng. J. 2017, 320, 644.
|
[20] |
P. Q. Long , Y. H. Zhang , X. X. Chen , Z. G. Yi , J. Mater. Chem. A 2015, 3, 4163.
|
[21] |
P. M. Wood , Biochem. J. 1988, 253, 287.
|
[22] |
W. H. Koppenol , J. F. Liebman , J. Phys. Chem. 1984, 88, 99.
|
[23] |
Y. F. Mu , C. Zhang , M. R. Zhang , W. Zhang , M. Zhang , T. B. Lu , ACS Appl. Mater. Interfaces 2021, 13, 22314.
|
[24] |
H. N. Ge , F. Y. Xu , B. Cheng , J. G. Yu , W. K. Ho , ChemCatChem 2019, 11, 6301.
|
[25] |
Q. L. Xu , L. Y. Zhang , B. Cheng , J. J. Fan , J. G. Yu , Chem 2020, 6, 1543.
|
[26] |
L. Y. Zhang , J. J. Zhang , H. G. Yu , J. G. Yu , Adv. Mater. 2022, 34, 2107668.
|
[27] |
C. Cheng , B. W. He , J. J. Fan , B. Cheng , S. W. Cao , J. G. Yu , Adv. Mater. 2021, 33, 2100317.
|
[28] |
Y. X. Xiao , Z. Ji , C. Zou , Y. Q. Xu , R. Wang , J. Wu , G. L. Liu , P. He , Q. Wang , T. Jia , Appl. Surf. Sci. 2021, 556, 149767.
|
[29] |
L. B. Wang , B. Cheng , L. Y. Zhang , J. G. Yu , Small 2021, 17, 2103447.
|
[30] |
F. Y. Xu , K. Meng , B. Cheng , S. Y. Wang , J. S. Xu , J. G. Yu , Nat. Commun. 2020,
CrossRef
Google scholar
|
[31] |
X. Y. Xu , Y. H. Su , Y. P. Dong , X. Luo , S. H. Wang , W. Y. Zhou , R. Li , K. P. Homewood , X. H. Xia , Y. Gao , X. X. Chen , J. Hazard. Mater. 2022, 424, 127685.
|
[32] |
P. F. Xia , S. W. Cao , B. C. Zhu , M. J. Liu , M. S. Shi , J. G. Yu , Y. F. Zhang , Angew. Chem. Int. Ed. 2020, 59, 5218.
|
[33] |
J. G. Yu , J. X. Low , W. Xiao , P. Zhou , M. Jaroniec , J. Am. Chem. Soc. 2014, 136, 8839.
|
[34] |
J. X. Low , J. G. Yu , M. Jaroniec , S. Wageh , A. A. Al-Ghamdi , Adv. Mater. 2017, 29, 1601694.
|
[35] |
S. Wang , B. Zhu , M. Liu , L. Zhang , J. Yu , M. Zhou , Appl. Catal. B Environ. 2019, 243, 19.
|
[36] |
R. J. Yang , Y. F. Zhang , Y. Y. Fnag , R. H. Wang , R. S. Zhu , Y. X. Tang , Z. Y. Yin , Z. Y. Zeng , Chem. Eng. J. 2022, 428, 131145.
|
[37] |
L. B. Yao , E. Y. Guo , M. Z. Wei , Q. Y. Wang , Q. F. Lu , Photochem. Photobiol. 2019, 95, 1122.
|
[38] |
J. W. Wang , C. H. Hua , X. L. Dong , Y. Wang , N. Zheng , Sustain. Energy Fuel 2020, 4, 1855.
|
[39] |
J. D. Hu , D. Y. Chen , N. J. Li , Q. F. Xu , H. Li , J. H. He , J. M. Lu , Appl. Catal. B 2018, 236, 45.
|
[40] |
P. Zhou , J. G. Yu , M. Jaroniec , Adv. Mater. 2014, 26, 4920.
|
[41] |
Q. T. Han , X. W. Bai , Z. Q. Man , H. C. He , L. Li , J. Q. Hu , A. Alsaedi , T. Hayat , Z. T. Yu , W. H. Zhang , J. L. Wang , Y. Zhou , Z. G. Zou , J. Am. Chem. Soc. 2019, 141, 4209.
|
[42] |
Y. H. Su , X. Y. Xu , R. Li , X. Luo , H. J. Yao , S. C. Fang , K. P. Homewood , Z. B. Huang , Y. Gao , X. X. Chen , Chem. Eng. J. 2022, 429, 132241.
|
[43] |
Z. Kong , Y. J. Yuan , D. Q. Chen , G. L. Fang , Y. Yang , S. H. Yang , D. P. Cao , Dalton Trans. 2017, 46, 2072.
|
[44] |
X. Z. Yuan , L. B. Jiang , J. Liang , Y. Pan , J. Zhang , H. Wang , L. J. Leng , Z. B. Wu , R. P. Guan , G. M. Zeng , Chem. Eng. J. 2019, 356, 371.
|
[45] |
D. Ma , Y. X. Zhang , M. C. Gao , Y. J. Xin , J. Wu , N. Bao , Appl. Surf. Sci. 2015, 353, 118.
|
[46] |
D. Errandonea , O. Gomis , B. García-Domene , J. Pellicer-Porres , V. Katari , S. N. Achary , A. K. Tyagi , C. Popescu , Inorg. Chem. 2013, 52, 12790.
|
[47] |
F. Lisco , P. M. Kaminski , A. Abbas , K. Bass , J. W. Bowers , G. Claudio , M. Losurdo , J. M. Walls , Thin Solid Films 2015, 582, 323.
|
[48] |
Z. H. Ai , L. Z. Zhang , S. C. Lee , J. Phys. Chem. C 2010, 114, 18594.
|
[49] |
E. A. Abdelrahman , R. H. Hegazey , Y. H. Kotp , A. Alharbi , Spectrochim. Acta Part A 2019, 222, 117195.
|
[50] |
H. Liu , J. Y. Yu , Y. K. Chen , Z. Q. Zhou , G. W. Xiong , L. L. Zeng , H. D. Li , Z. Liu , L. L. Zhao , J. G. Wang , B. L. Chu , H. Liu , W. J. Zhou , ACS Appl. Mater. Interfaces 2019, 12, 2362.
|
[51] |
Y. D. Meng , Y. Z. Hong , C. Y. Huang , Y. D. Shi , CrystEngComm 2017, 19, 982.
|
[52] |
J. Hou , W. Zheng , S. Jiao , H. Zhua , CrystEngComm 2012, 14, 5923.
|
[53] |
X. Luo , Y. Ke , L. Yu , W. Yu , K. P. Homewood , X. Chen , Y. Gao , Appl. Surf. Sci. 2020, 515, 145970.
|
[54] |
Y. Dong , X. Luo , Y. Wang , P. Ji , H. Xu , S. Wang , W. Zhou , R. Li , K. P. Homewood , M. Lourenço , Y. Gao , X. Chen , Appl. Surf. Sci. 2022, 599, 153972.
|
[55] |
J. G. Hou , Z. Wang , S. Q. Jiao , H. M. Zhu , CrystEngComm 2012, 14, 5923.
|
[56] |
X. Luo , Y. M. Ke , L. Yu , Y. Wang , K. P. Homewood , X. X. Chen , Y. Gao , Appl. Surf. Sci. 2020, 515, 145970.
|
[57] |
Y. P. Dong , X. Luo , Y. Wang , P. Z. Ji , X. Hong , S. H. Wang , W. Y. Zhou , R. Li , K. P. Homewood , M. Lourenço , Y. Gao , X. X. Chen , Appl. Surf. Sci. 2022, 599, 153972.
|
[58] |
X. J. Zhao , W. T. Xu , Y. P. Dong , Y. H. Su , Y. B. Liu , W. J. Chen , M. Q. Xu , R. Li , Y. Gao , X. X. Chen , X. Y. Pan , Sep. Purif. Technol. 2022, 297, 121478.
|
/
〈 | 〉 |