Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability
Huachao Yang, Yiheng Qi, Zifan Wang, Qinghu Pan, Chuanzhi Zhang, Jianhua Yan, Kefa Cen, Zheng Bo, Kostya (Ken) Ostrikov
Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability
Safe operation of electrochemical capacitors (supercapacitors) is hindered by the flammability of commercial organic electrolytes. Non-flammable Water-in-Salt (WIS) electrolytes are promising alternatives; however, they are plagued by the limited operation voltage window (typically ≤2.3 V) and inherent corrosion of current collectors. Herein, a novel deep eutectic solvent (DES)-based electrolyte which uses formamide (FMD) as hydrogen-bond donor and sodium nitrate (NaNO3) as hydrogen-bond acceptor is demonstrated. The electrolyte exhibits the wide electrochemical stability window (3.14 V), high electrical conductivity (14.01 mS cm−1), good flame-retardance, anticorrosive property, and ultralow cost (7% of the commercial electrolyte and 2% of WIS). Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO3- ions are primarily responsible for the superior stability and conductivity. The developed NaNO3/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices, evidenced by the high voltage window (2.6 V), outstanding energy and power densities (22.77 Wh kg−1 at 630 W kg−1 and 17.37 kW kg−1 at 12.55 Wh kg−1), ultralong cyclic stability (86% after 30 000 cycles), and negligible current collector corrosion. The NaNO3/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors.
cyclic stability / deep eutectic solvents / electrical conductivity / electrochemical stability window / supercapacitors
[1] |
F. Wang , X. Wu , X. Yuan , Z. Liu , Y. Zhang , L. Fu , Y. Zhu , Q. Zhou , Y. Wu , W. Huang , Chem. Soc. Rev. 2017, 46, 6816.
|
[2] |
H. Yang , J. Yang , C. Li , Z. Huang , A. Bendavid , J. Yan , K. Cen , Z. Han , Z. Bo , J. Power Sources 2022, 541, 231684.
|
[3] |
G. Zhang , X. Xiao , B. Li , P. Gu , H. Xue , H. Pang , J. Mater. Chem. A 2017, 5, 8155.
|
[4] |
Z. Bo , K. Yi , H. Yang , X. Guo , Z. Huang , Z. Zheng , J. Yan , K. Cen , K. Ostrikov , J. Power Sources 2021, 492, 229639.
|
[5] |
M. Beidaghi , Y. Gogotsi , Energy Environ. Sci. 2014, 7, 867.
|
[6] |
J. M. Li , L. An , H. Z. Li , J. Q. Sun , C. Shuck , X. H. Wang , Y. L. Shao , Y. G. Li , Q. H. Zhang , H. Z. Wang , Nano Energy 2019, 63, 103848.
|
[7] |
F. Béguin , V. Presser , A. Balducci , E. Frackowiak , Adv. Mater. 2014, 26, 2219.
|
[8] |
B. Pal , S. Yang , S. Ramesh , V. Thangadurai , R. Jose , Nanoscale Adv. 2019, 1, 3807.
|
[9] |
C. Zhong , Y. Deng , W. Hu , J. Qiao , L. Zhang , J. Zhang , Chem. Soc. Rev. 2015, 44, 7484.
|
[10] |
M. Watanabe , M. L. Thomas , S. Zhang , K. Ueno , T. Yasuda , K. Dokko , Chem. Rev. 2017, 117, 7190.
|
[11] |
N. Jackel , P. Simon , Y. Gogotsi , V. Presser , ACS Energy Lett. 2016, 1, 1262.
|
[12] |
Z. Chen , X. Wang , Z. Ding , Q. Wei , Z. Wang , X. Yang , J. Qiu , ChemSusChem 2019, 12, 5099.
|
[13] |
K. Liu , W. Liu , Y. Qiu , B. Kong , Y. Sun , Z. Chen , D. Zhuo , D. Lin , Y. Cui , Sci. Adv. 2017, 3, e1601978.
|
[14] |
R. Hayes , G. G. Warr , R. Atkin , Chem. Rev. 2015, 115, 6357.
|
[15] |
C. Merlet , B. Rotenberg , P. A. Madden , P. Taberna , P.-L. Simon , Y. Gogotsi , M. Salanne , Nat. Mater. 2012, 11, 306.
|
[16] |
L. Suo , O. Borodin , T. Gao , M. Olguin , J. Ho , X. Fan , C. Luo , C. Wang , K. Xu , Science 2015, 350, 938.
|
[17] |
Q. Dou , S. Lei , D. W. Wang , Q. Zhang , D. Xiao , H. Guo , A. Wang , H. Yang , Y. Li , S. Shi , X. Yan , Energy Environ. Sci. 2018, 11, 3212.
|
[18] |
X. Bu , L. Su , Q. Dou , S. Lei , X. Yan , J. Mater. Chem. A 2019, 7, 7541.
|
[19] |
S. Gheytani , Y. Liang , Y. Jing , J. Q. Xu , Y. Yao , J. Mater. Chem. A 2016, 4, 395.
|
[20] |
S. Y. Kim , Y. I. Song , J.-H. Wee , C. H. Kim , B. W. Ahn , J. W. Lee , S. J. Shu , M. Terrones , Y. A. Kim , C.-M. Yang , Carbon 2019, 153, 495.
|
[21] |
P. Chomkhuntod , P. Iamprasertkun , P. Chiochan , P. Suktha , M. Sawangphruk , Sci. Rep. 2021, 11, 13082.
|
[22] |
M.-J. Deng , T.-H. Chou , L.-H. Yeh , J.-M. Chen , K.-T. Lu , J. Mater. Chem. A 2018, 6, 20686.
|
[23] |
X. Lu , E. J. Hansen , G. He , J. Liu , Small 2022, 18, 2200550.
|
[24] |
X. Ge , C. Gu , X. Wang , J. Tu , J. Mater. Chem. A 2017, 5, 8209.
|
[25] |
J. D. Mota-Morales , E. Morales-Narváez , Matter 2021, 4, 2141.
|
[26] |
B. Zhang , H. Sun , Y. Huang , B. Zhang , F. Wang , J. Song , Chem. Eng. J. 2021, 425, 131518.
|
[27] |
Y. Zhao , H. Cheng , Y. Li , J. Rao , S. Yue , Q. Le , Q. Qian , Z. Liu , J. Ouyang , J. Mater. Chem. A 2022, 10, 4222.
|
[28] |
M. B. Karimi , F. Mohammadi , K. Hooshyari , J. Membr. Sci. 2020, 611, 118217.
|
[29] |
K.-I. Kim , L. Tang , P. Mirabedini , A. Yokoi , J. M. Muratli , Q. Guo , M. M. Lerner , K. Gotoh , P. A. Greaney , C. Fang , X. Ji , Adv. Funct. Mater. 2022, 32, 2112709.
|
[30] |
X. Hou , T. P. Pollard , X. He , L. Du , X. Ju , W. Zhao , M. Li , J. Wang , E. Paillard , H. Lin , J. Sun , K. Xu , O. Borodin , M. Winter , J. Li , Adv. Energy Mater. 2022, 12, 2200401.
|
[31] |
Q. Zhang , K. D. V. Vigier , S. Royer , F. Jérôme , Chem. Soc. Rev. 2012, 41, 7108.
|
[32] |
D. Carriazo , M. C. Serrano , M. C. Gutiérrez , M. L. Ferrer , F. del Monte , Chem. Soc. Rev. 2012, 41, 4996.
|
[33] |
D. Wu , L. H. Xu , H. J. Feng , Y. W. Zhu , X. Y. Chen , P. Cui , J. Power Sources 2021, 492, 229634.
|
[34] |
S. Azmi , M. F. Koudahi , E. Frackowiak , Energy Environ. Sci. 2022, 15, 1156.
|
[35] |
M. R. Lukatskaya , J. I. Feldblyum , D. G. Mackanic , F. Lissel , D. L. Michels , Y. Cui , Z. Bao , Energy Environ. Sci. 2018, 11, 2876.
|
[36] |
Y.-R. Tsai , B. Vedhanarayanan , T.-Y. Chen , Y.-C. Lin , J.-Y. Lin , X. Ji , T.-W. Lin , J. Power Sources 2022, 521, 230954.
|
[37] |
C. Du , B. Zhao , X.-B. Chen , N. Birbilis , H. Yang , Sci. Rep. 2016, 6, 29225.
|
[38] |
D. Lapenã , F. Bergua , L. Lomba , B. Giner , C. Lafuente , J. Mol. Liq. 2020, 303, 112679.
|
[39] |
C.-W. Lien , B. Vedhanarayanan , J.-H. Chen , J.-Y. Lin , H.-H. Tsai , L.-D. Shao , T.-W. Lin , Chem. Eng. J. 2021, 405, 126706.
|
[40] |
M. Zhong , Q. F. Tang , Y. W. Zhu , X. Y. Chen , Z. J. Zhang , J. Power Sources 2020, 452, 227847.
|
[41] |
S. P. Beltran , X. Cao , J. G. Zhang , P. B. Balbuena , Chem. Mater. 2020, 32, 5973.
|
[42] |
J. Zhang , Z. Cao , L. Zhou , G. T. Park , L. G. Cavallo , L. M. Wang , H. N. Alshareef , J. Sun , Y. K. Ming , ACS Energy Lett. 2020, 5, 3124.
|
[43] |
F. G. Camacho , W. A. Alves , Spectrochim. Acta A 2015, 151, 11.
|
[44] |
A. J. Lees , B. P. Straughan , D. J. Gardiner , J. Mol. Struct. 1981, 71, 61.
|
[45] |
R. Huang , J. Feng , Z. Ling , X. Fang , Z. Zhang , Constr. Build. Mater. 2019, 226, 859.
|
[46] |
Y. Fang , Y. Ding , Y. Tang , X. Liang , C. Jin , S. Wang , X. Gao , Z. Zhang , Appl. Thermal Eng. 2019, 150, 1177.
|
[47] |
L. H. Xu , D. Wu , M. Zhong , G. B. Wang , X. Y. Chen , Z. J. Zhang , J. Power Sources 2021, 490, 229365.
|
[48] |
W. Zaidi , A. Boisset , J. Jacquemin , L. Timperman , M. Anouti , J. Phys. Chem. C 2014, 118, 4033.
|
[49] |
A. Boisset , J. Jacquemin , M. Anouti , Electrochim. Acta 2013, 102, 120.
|
[50] |
C. Liao , L. Han , W. Wang , W. Li , X. Mu , Y. Kan , J. Zhu , Z. Gui , X. He , L. Song , Y. Hu , Adv. Funct. Mater. 2023, 33, 2212605.
|
[51] |
W. Deng , X. Wang , C. Liu , C. Li , J. Chen , N. Zhu , R. Li , M. Xue , Energy Storage Mater. 2019, 20, 373.
|
[52] |
H. Bi , X. Wang , H. Liu , Y. He , W. Wang , W. Deng , X. Ma , Y. Wang , W. Rao , Y. Chai , H. Ma , R. Li , J. Chen , Y. Wang , M. Xue , Adv. Mater. 2020, 32, 2000074.
|
[53] |
S. Ko , Y. Yamada , A. Yamada , Electrochem. Commun. 2020, 116, 106764.
|
[54] |
Z. Bo , X. Cheng , H. Yang , X. Guo , J. Yan , K. Cen , Z. Han , L. Dai , Adv. Energy Mater. 2022, 12, 2103394.
|
[55] |
Z. Bo , Z. Huang , C. Xu , Y. Chen , E. Wu , J. Yan , K. Cen , H. Yang , K. Ostrikov , Energy Storage Mater. 2022, 50, 395.
|
[56] |
J. Guo , Y. Ma , K. Zhao , Y. Wang , B. Yang , J. Cui , X. Yan , ChemElectroChem 2019, 6, 5433.
|
[57] |
Y. Pan , S. Cheng , X. Ji , T. Liu , L. Meng , Ionics 2022, 28, 2481.
|
[58] |
X. Zhang , J. Chen , Z. Xu , Q. Dong , H. Ao , Z. Hou , Y. Qian , Energy Storage Mater. 2022, 46, 147.
|
[59] |
S. Azmi , A. Klimek , E. Frackowiak , Chem. Eng. J. 2022, 444, 136594.
|
[60] |
W. Zhu , G. Pezzotti , J. Appl. Phys. 2011, 109, 073502.
|
[61] |
S. Qi , J. Liu , J. He , H. Wang , M. Wu , D. Wu , J. Huang , F. Li , X. Li , Y. Ren , J. Ma , J. Energy Chem. 2021, 63, 270.
|
[62] |
H.-J. Liang , Z.-Y. Gu , X.-X. Zhao , J.-Z. Guo , J.-L. Yang , W.-H. Li , B. Li , Z.-M. Liu , Z.-H. Sun , J.-P. Zhang , X.-L. Wu , Sci. Bull. 2022, 67, 1581.
|
[63] |
H. Tang , Z. Qu , Y. Yan , W. Zhang , H. Zhang , M. Zhu , O. G. Schmidt , Mater. Futures 2022, 1, 022001.
|
/
〈 | 〉 |