Solar Driven 15.7% Hydrogen Conversion by Harmony of Light Harvesting, Electron Transporting Bridge, and S-Defection in a Self-Assembled Microscale CuS/rGO/CP Photoanode
Sujeong Kim, Boseok Seo, Hyerim Park, Younghwan Im, Jeong Yeon Do, Byung Sub Kwak, Namgyu Son, Minkyu Kim, Misook Kang
Solar Driven 15.7% Hydrogen Conversion by Harmony of Light Harvesting, Electron Transporting Bridge, and S-Defection in a Self-Assembled Microscale CuS/rGO/CP Photoanode
CuS is an encouraging photoelectrode candidate that meets the essential requirements for efficient solar-to-hydrogen production, but it has not been thoroughly studied. A CuS light absorber layer is grown by the self-assembly of copper and sulfur precursors on a carbon paper (CP) electrode. Simultaneously, rGO is introduced as a buffer layer to control the optical and electrical properties of the absorber. The well-ordered microstructural arrangement suppresses the recombination loss of electrons and holes owing to enhanced charge-carrier generation, separation, and transport. The potential reaching 10 mA cm−2 in 1.0 M KOH solution is significantly lowered to 0.87 V, and the photocurrent density at 1.23 V is 94.7 mA cm−2. The computational result reveals that the potential-determining step is sensitive to O* stability; the lower stability of O* in the thin layer of CuS/rGO decreases the free-energy gap between the initial and final states of the potential-determining step, resulting in a lowering of the onset potential. The faradaic efficiency for the photoelectrochemical oxygen evolution reaction in the optimized 2CuS/1rGO/CP photoanode is 98.60%, and the applied bias photon-to-current and the solar-to-hydrogen efficiencies are 11.2% and 15.7%, respectively, and its ultra-high performance is maintained for 250 h. These record-breaking achievement indices may be a trigger for establishing a green hydrogen economy.
15.7%-solar to hydrogen / density functional theory / lower photopotential / p-CuS/rGO/CP photoanode / photoelectrochemical oxygen evolution
[1] |
J. W. Ager , M. R. Shaner , K. A. Walczak , I. D. Sharp , S. Ardo , RSC 2015, 8, 2811.
|
[2] |
G. Wang , H. Wang , Y. Ling , Y. Tang , X. Yang , R. C. Fitzmorris , C. Wang , J. Z. Xhang , Y. Li , ABS 2011, 11, 3026.
|
[3] |
D. Zhou , T. Zhou , Y. Tian , X. Zhu , Y. Tu , J. Nanomater. 2018, 2018, 13.
|
[4] |
A. Grimm , W. A. D. Jong , G. J. Kramer , Int. J. Hydrog. Energy 2020, 45, 22545.
|
[5] |
Y. J. Jang , J. S. Lee , ChemSusChem 2019, 12, 1835.
|
[6] |
J. Li , X. Jin , R. Li , Y. Zhao , X. Wang , X. Liu , H. Jiao , Appl. Catal. B 2019, 240, 1.
|
[7] |
S. Masudy-Panah , K. Radhakrishnan , H. R. Tan , R. Yi , T. I. Wong , G. K. Dalapati , Sol. Energy Mater. Sol. Cells 2015, 140, 266.
|
[8] |
D. Jiang , J. Xue , L. Wu , W. Zhou , Y. Zhang , X. Li , Appl. Catal. B 2017, 211, 199.
|
[9] |
W. Zhu , J. Du , Q. Yang , D. Liu , ChemistrySelect. 2020, 5, 9195.
|
[10] |
K. Zou , Y. Fu , R. Yang , X. Zhang , C. Du , J. Chen , Anal. Chim. Acta 2020, 1099, 75.
|
[11] |
M. D. Regulacio , Y. Wang , Z. W. She , M.-Y. Han , ACS Appl. Nano Mater. 2018, 1, 3042.
|
[12] |
L. Isac , C. Cazan , A. Enesca , L. Andronic , Front. Chem. 2019, 7, 694.
|
[13] |
J. C. Conesa , Catalysts 2022, 12, 40.
|
[14] |
N. M. S. Hidayah , W.-W. Liu , C.-W. Lai , N. Z. Noriman , C.-S. Khe , U. Hashim , H. C. Lee , AIP Conf. Proc. 2017, 1892, 150002.
|
[15] |
S. Nezar , Y. Cherifi , A. Barras , A. Addad , E. Dogheche , N. Saoula , N. Laoufi , P. Roussel , S. Szunerits , R. Boukherroub , Arab. J. Chem. 2019, 12, 215.
|
[16] |
A. L. Patterson , Phys. Rev. 1939, 56, 978.
|
[17] |
S. H. Chaki , J. P. Tailor , M. P. Deshpande , Mater. Sci. Semicond. Process. 2014, 27, 577.
|
[18] |
J. P. Tailor , A. J. Khimani , S. H. Chaki , AIP Conf. Proc. 2018, 1961, 30012.
|
[19] |
G. Govindasamy , K. Pal , M. A. Elkodous , G. S. El-Sayyad , K. Gautam , P. Murugasan , J. Mater. Sci. Mater. Electron. 2019, 30, 16463.
|
[20] |
X. Li , S. Wang , J. Xie , J. Hu , H. Fu , Int. J. Polym. Mater. 2019, 68, 319.
|
[21] |
H. Huang , K. K. H. D. Silva , G. R. A. Kumara , M. Yoshimura , Sci. Rep. 2018, 8, 6849.
|
[22] |
Z. Abdelsadek , S. Gonzalez-Cortes , F. Bali , O. Cherifi , D. Halliche , P. J. Masset , Res. Chem. Intermed. 2022, 48, 1073.
|
[23] |
Y. Dong , Y. Wang , Z. Tian , K. Jiang , Y. Li , Y. Lin , C. W. Oloman , E. L. Gyenge , J. Su , L. Chen , Innovation 2021, 2, 100161.
|
[24] |
H. Park , N. Son , B. H. Park , C. Liu , S. W. Joo , M. Kang , Chem. Eng. J. 2022, 430, 133104.
|
[25] |
W. Xu , W. Gao , L. Meng , W. Tian , L. Li , Adv. Energy Mater. 2021, 11, 2101181.
|
[26] |
I. Toor , M. Ejaz , H.-S. Kwon , Corrosion 2013, 69, 345.
|
[27] |
J. J. Ding , H. X. Chen , D. Q. Feng , H. W. Fu , IOP Conf. Ser. Earth Environ. Sci. 2018, 292, 12097.
|
[28] |
S. H. Chaki , J. P. Tailor , M. P. Deshpande , Adv. Sci. Lett. 2014, 20, 959.
|
[29] |
M. E. Khan , M. M. Khan , B. K. Min , M. H. Cho , Sci. Rep. 2018, 8, 1723.
|
[30] |
P. Varadhan , H. C. Fu , Y. C. Kao , R. H. Horng , J. H. He , Nat. Commun. 2019, 10, 5282.
|
[31] |
Y. Chen , K. Sun , H. Audesirk , C. Xiang , N. S. Lewis , Energy Environ. Sci. 2015, 8, 1736.
|
[32] |
R. Attias , B. Dlugatch , M. S. Chae , Y. Goffer , D. Aurbach , Electrochem. Commun. 2021, 124, 106952.
|
[33] |
Z. Zhou , L. Wei , Y. Wang , H. E. Karahan , Z. Chen , Y. Lei , X. Chen , S. Zhai , X. Liao , Y. Chen , J. Mater. Chem. A 2017, 5, 20390.
|
[34] |
P. Connor , J. Schuch , B. Kaiser , W. Jaegermann , Z. Phys. Chem 2020, 234, 979.
|
[35] |
E. Cossar , M. S. E. Houache , Z. Zhang , E. A. Baranova , J. Electroanal. Chem. 2020, 280, 114246.
|
[36] |
C. Mahala , M. D. Sharma , M. Basu , ChemElectroChem 2019, 6, 3488.
|
[37] |
B. You , Y. Sun , Acc. Chem. Res. 2018, 51, 157.
|
[38] |
X. Zou , Y. Zhang , Chem. Soc. Rev. 2015, 44, 5148.
|
[39] |
M. Qian , X. Liu , S. Cui , H. Jia , P. Du , Electrochim. Acta 2018, 263, 318.
|
[40] |
S. S. Patil , M. G. Mali , M. A. Hassan , D. R. Patil , S. S. Kolekar , S. W. Ryu , Sci. Rep. 2017, 7, 8404.
|
[41] |
H. Park , I. J. Park , M. G. Lee , K. C. Kwon , S.-P. Hong , D. H. Kim , S. A. Lee , T. H. Lee , C. Kim , C. W. Moon , D.-Y. Son , G. H. Jung , H. S. Yang , J. R. Lee , J. Lee , N.-G. Park , S. Y. Kim , J. Y. Kim , H. W. Jang , ACS Appl. Mater. Interf. 2019, 11, 37.
|
[42] |
W.-H. Cheng , A. de la Calle , H. A. Atwater , E. B. Stechel , C. Xiang , ACS Energy Lett. 2021, 6, 3096.
|
[43] |
H. L. Tuller , Mater. Renew. Sustain. Energy 2017, 6 (1), 1.
|
[44] |
X. Shen , Y. Pan , B. Liu , J. Yang , J. Zeng , Z. Peng , Phys. Chem. Chem. Phys. 2017, 19, 12628.
|
[45] |
S. M. N. Jeghan , D. Kim , Y. Lee , M. Kim , G. Lee , Appl. Catal. B Environ. 2022, 308, 121221.
|
[46] |
J. Lee , N. Son , B. H. Park , S. Kim , D. Bae , M. Kim , S. W. Joo , M. Kang , Appl. Surf. Sci. 2022, 600, 154048.
|
[47] |
J. Geppert , P. Röse , S. Czioska , D. Escalera-López , A. Boubnov , E. Saraçi , S. Cherevko , J.-D. Grunwaldt , U. Krewer , J. Am. Chem. Soc. 2022, 144, 13205.
|
[48] |
M. A. Marwat , M. Humayun , M. W. Afridi , H. Zhang , M. R. A. Karim , M. Ashtar , M. Usman , S. Waqar , H. Ullah , C. Wang , W. Luo , ACS Appl. Energy Mater. 2021, 4, 12007.
|
/
〈 | 〉 |