Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO2 Hierarchical Structure

Xun Li, Tian Tan, Wei Ji, Wanling Zhou, Yuwen Bao, Xiaohong Xia, Zhangfan Zeng, Yun Gao

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12624. DOI: 10.1002/eem2.12624
RESEARCH ARTICLE

Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO2 Hierarchical Structure

Author information +
History +

Abstract

Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage. In this work, a self-assembled mulberry-like ZnO/SnO2 hierarchical structure is constructed by a two-step hydrothermal method. The resultant sensor works at room temperature with excellent response of ~56.1% to 2000 ppm CH4 at 55% relative humidity. It is found that the strain induced at the ZnO/SnO2 interface greatly enhances the piezoelectric polarization on the ZnO surface and that the band bending results in the accumulation of chemically adsorbed O2- ions close to the interface, leading to significant improvement in the sensing performance of the methane gas sensor at room temperature.

Keywords

heterojunction / methane sensor / oxygen vacancy / piezoelectric polarization / ZnO/SnO2 hierarchical structure

Cite this article

Download citation ▾
Xun Li, Tian Tan, Wei Ji, Wanling Zhou, Yuwen Bao, Xiaohong Xia, Zhangfan Zeng, Yun Gao. Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO2 Hierarchical Structure. Energy & Environmental Materials, 2024, 7(3): 12624 https://doi.org/10.1002/eem2.12624

References

[1]
V. S. Bhati , M. Hojamberdiev , M. Kumar , Energy Rep. 2020, 6, 46.
[2]
F. Meng , X. Li , Z. Yuan , Y. Lei , T. Qi , J. Li , IEEE Trans. Instrum. Meas. 2021, 70, 9511510.
[3]
F. Meng , H. Wang , Z. Yuan , R. Zhang , J. Li , IEEE Trans. Instrum. Meas. 2022, 71, 9507909.
[4]
W. Qin , Z. Yuan , H. Gao , R. Zhang , F. Meng , Sens. Actuators B Chem. 2021, 341, 130015.
[5]
N. Vuong , M. Hieu , N. Hieu , H. Yi , H. Kim , D. Han , Y. Kim , Sens. Actuators B Chem. 2014, 192, 327.
[6]
S. Nasresfahani , A. Zarifkar , M. Sheikhi , M. Tohidi , Mater. Res. Bull. 2017, 89, 161.
[7]
W. Lu , D. Ding , Q. Xue , Y. Du , Y. Xiong , J. Zhang , X. Pan , W. Xing , Sens. Actuators B Chem. 2018, 254, 393.
[8]
J. Wang , C. Hu , Y. Xia , B. Zhang , Sens. Actuators B Chem. 2021, 333, 129547.
[9]
S. Chen , W. Jing , R. Luo , L. Xiang , W. Li , D. Xie , Appl. Catal. B 2020, 264, 118554.
[10]
Y. Xia , J. Wang , L. Xu , X. Li , S. Huang , Sens. Actuators B Chem. 2020, 304, 127334.
[11]
M. Xiao , Y. Li , B. Zhang , G. Sun , Z. Zhang , Nano 2019, 9, 1507.
[12]
C. Pan , M. Chen , R. Yu , Adv. Mater. 2016, 47, 1535.
[13]
Y. J. Kwon , S. Y. Kang , A. Mirzaei , M. S. Choi , J. H. Bang , S. S. Kim , H. W. Kim , Sens. Actuators B Chem. 2017, 249, 656.
[14]
E. Nikan , A. Khodadadi , Y. Mortazavi , Sens. Actuators B Chem. 2013, 184, 196.
[15]
X. Li , Z. Sun , Y. Bao , X. Xia , T. Tao , K. P. Homewood , R. Li , Y. Gao , Sens. Actuators B Chem. 2022, 350, 130869.
[16]
W. Wei , H. Zhang , T. Tao , X. Xia , Y. Bao , M. Lourenço , K. Homewood , Z. Huang , Y. Gao , Energy Environ. Mater. 2023, e12570.
[17]
K. Bunpang , A. Wisitsoraat , A. Tuantranont , S. Singkammo , S. Phanichphant , C. Liewhiran , Sens. Actuators B Chem. 2019, 291, 177.
[18]
X. Chen , Y. Li , X. Pan , D. Cortie , X. Huang , Z. Yi , Nat. Commun. 2016, 7, 12273.
[19]
B. D. Aleksandra , Appl. Phys. Lett. 2004, 14, 2635.
[20]
M. L. Schmidt , M. MacManus , J. L. Driscoll , Mater. Today 2007, 10, 40.
[21]
S. T. Raki Tahmasebi , A. Haghighatzadeh , J. Inorg. Organomet. P 2021, 31, 2319.
[22]
P. C. Chen , Sukcharoenchoke , K. Ryu , L. G. Arco , Adv. Mater. 2010, 22, 1900.
[23]
L. Zheng , J. Xie , X. Liu , C. Yang , J. Zhang , ACS Appl. Mater. Interfaces 2020, 12, 46267.
[24]
D. Zhang , N. Yin , B. Xia , J. Mater. Sci. Mater. Electron. 2015, 26, 5937.
[25]
V. Galstyan , E. Comini , I. Kholmanov , G. Faglia , G. Sberveglieri , RSC Adv. 2016, 6, 34225.
[26]
P. K. Basu , S. K. Jana , H. Saha , S. Basu , Sens. Actuators B Chem. 2008, 135, 81.
[27]
A. R. Landa-Cánovas , J. Santiso , F. R. Agulló , P. Herrero , E. A. Navarrete , E. M. Ochoa , J. R. Ramos , M. Gabás , Ceram. Int. 2019, 45, 6319.
[28]
M. Tzolov , N. Tzenov , D. DimovaMalinovska , M. Kalitzova , C. Pizzuto , G. Vitali , G. Zollo , I. Ivanov , Thin Solid Films 2000, 379, 28.
[29]
M. H. Zhao , Z. L. Wang , S. X. Mao , Nano Lett. 2004, 4, 587.
[30]
X. Xia , W. Wu , Z. Wang , Y. Bao , Z. Huang , Y. Gao , Sens. Actuators B Chem. 2016, 234, 192.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/