Conversion of LiPSs Accelerated by Pt-Doped Biomass-Derived Hyphae Carbon Nanobelts as Self-Supporting Hosts for Long-Lifespan Li–S Batteries
Fengfeng Han, Liwen Fan, Xinzhi Ma, Huiqing Lu, Lu Li, Xitian Zhang, Lili Wu
Conversion of LiPSs Accelerated by Pt-Doped Biomass-Derived Hyphae Carbon Nanobelts as Self-Supporting Hosts for Long-Lifespan Li–S Batteries
Rechargeable Li–S batteries (LSBs) are emerging as an important alternative to lithium-ion batteries (LIBs), owing to their high energy densities and low cost; yet sluggish redox kinetics of LiPSs results in inferior cycle life. Herein, we prepared multifunctional self-supporting hyphae carbon nanobelt (HCNB) as hosts by carbonization of hyphae balls of Rhizopus, which could increase the S loading of the cathode without sacrificing reaction kinetics. Trace platinum (Pt) nanoparticles were introduced into HCNBs (PtHCNBs) by ion-beam sputtering deposition. Based on the X-ray photoelectron spectroscopy analyses, the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs. Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species. Benefiting from the synergistic catalytic effect and the unique structures, the as-prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77% for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm−2. More importantly, remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm−2. This finding offers a new strategy to prolong the cycle life of LSBs.
high areal capacity / high S loading / hyphae carbon nanobelt / lithium–sulfur battery / operando Raman
[1] |
Q. Jin , K. X. Zhao , L. Li , X. Z. Ma , L. L. Wu , X. T. Zhang , Energy. Environ. Mater. 2022, 5, 1180.
|
[2] |
X. H. Liu , L. R. Zhang , X. Z. Ma , H. Q. Lu , L. Li , X. T. Zhang , L. L. Wu , Chem. Eng. J. 2023, 454, 140460.
|
[3] |
P. Shi , Z. H. Fu , M. Y. Zhou , X. Chen , N. Yao , L. P. Hou , C. Z. Zhao , B. Q. Li , J. Q. Huang , X. Q. Zhang , Q. Zhang , Sci. Adv. 2022, 8, eabq3445.
|
[4] |
A. Bhargavm , J. R. He , G. Abhay , A. Manthiram , Joule 2020, 4, 285.
|
[5] |
C. S. Cheng , S. H. Chung , Chem. Eng. J. 2022, 429, 132257.
|
[6] |
A. M. Abraham , K. Thiel , M. Shakouri , Q. F. Xiao , A. Paterson , J. Schwenzel , S. Ponnurangam , V. Thangadurai , Adv. Energy Mater. 2022, 12, 2201494.
|
[7] |
L. P. Hou , Z. Li , N. Yao , C. X. Bi , B. Q. Li , X. Chen , X. Q. Zhang , Q. Zhang , Adv. Mater. 2022, 34, 2205284.
|
[8] |
Y. Q. Tao , Y. J. Wei , Y. Liu , J. T. Wang , W. M. Qiao , L. C. Ling , D. H. Long , Energ. Environ. Sci. 2016, 9, 3230.
|
[9] |
N. N. Wang , X. Zhang , Z. Y. Ju , X. W. Yu , Y. X. Wang , Z. C. Bai , S. X. Dou , G. H. Yu , Nat. Commun. 2021, 12, 4519.
|
[10] |
G. G. Zhou , E. Paek , G. S. Hwang , A. Manthiram , Nat. Commun. 2015, 6, 7760.
|
[11] |
S. B. Zeng , X. Li , H. Zhong , S. W. Chen , Y. H. Mai , Small Methods 2019, 3, 1900028.
|
[12] |
H. Li , Y. Tao , C. Zhang , D. H. Liu , J. Y. Luo , W. C. Fan , Y. Xu , Y. Z. Li , C. H. You , Z. Z. Pan , M. C. Ye , Z. Y. Chen , Z. Dong , D. W. Wang , F. Y. Kang , J. Lu , Q. H. Yang , Adv. Energy Mater. 2018, 8, 1703438.
|
[13] |
Z. D. Fan , C. H. Wei , L. H. Yu , Z. Xia , J. S. Cai , Z. N. Tian , G. F. Zou , S. X. Dou , J. Y. Sun , ACS Nano 2020, 14, 867.
|
[14] |
X. G. Gao , Y. Huang , X. Y. Sun , S. M. Batool , T. H. Li , J. Power Sources 2022, 520, 230913.
|
[15] |
Y. C. Wang , C. S. Shi , J. W. Sha , L. Y. Ma , E. Z. Liu , N. Q. Zhao , ACS Appl. Mater. Interfaces 2022, 14, 25337.
|
[16] |
Y. Z. Song , W. Zhao , L. Kong , L. Zhang , X. Y. Zhu , Y. L. Shao , F. Ding , Q. Zhang , J. Y. Sun , Z. F. Liu , Energ. Environ. Sci. 2018, 11, 2620.
|
[17] |
Y. S. Bai , Q. Luo , J. Q. Liu , Chem. Soc. Rev. 2016, 45, 2756.
|
[18] |
M. Y. Wang , Z. C. Bai , T. Yang , C. H. Nie , X. Xu , Y. X. Wang , J. Yang , S. X. Dou , N. N. Wang , Adv. Energy Mater. 2022, 12, 2201585.
|
[19] |
K. Y. Zou , T. F. Zhou , Y. Z. Chen , X. Y. Xiong , W. T. Jing , X. Dai , M. Shi , N. Li , J. J. Sun , S. L. Zhang , C. F. Zhang , Y. N. Liu , Z. P. Gou , Adv. Energy Mater. 2022, 12, 2103981.
|
[20] |
X. Chen , T. Z. Hou , K. A. Persson , Q. Zhang , Mater. Today 2019, 22, 142.
|
[21] |
L. Liu , Y. X. Yin , J. Y. Li , S. H. Wang , Y. G. Gou , L. J. Wan , Adv. Mater. 2018, 30, 1706216.
|
[22] |
S. Y. Gao , M. Wang , Y. Chen , M. Tian , A. Z. Zhu , X. J. Wei , Nano Energy 2018, 45, 21.
|
[23] |
R. H. Gao , Q. Zhang , Y. Zhao , Z. Y. Han , C. B. Sun , J. Z. Sheng , X. W. Zhong , C. L. Chen , S. Y. Ni , Z. H. Piao , B. H. Li , G. M. Zhou , Adv. Funct. Mater. 2022, 32, 2110313.
|
[24] |
L. Huang , S. H. Shen , Y. Zhong , Y. Q. Zhang , L. J. Zhang , X. L. Wang , X. H. Xia , X. L. Tong , J. C. Zhou , J. P. Tu , Adv. Mater. 2022, 34, 2107415.
|
[25] |
C. Ma , Y. Q. Zhang , Y. M. Feng , N. Wang , L. J. Zhou , C. P. Liang , L. B. Chen , Y. Q. Lai , X. B. Ji , C. L. Yan , W. F. Wei , Adv. Mater. 2021, 33, 2100171.
|
[26] |
Y. F. Ding , Q. S. Chen , J. H. Wu , T. R. Yan , Z. X. Shi , M. L. Wang , D. Z. Yang , P. Wang , L. Zhang , J. Y. Sun , Adv. Mater. 2022, 34, 2202256.
|
[27] |
X. Qiao , C. Z. Wang , J. Zang , B. F. Guo , Y. Zheng , R. R. Zhang , J. Q. Cui , X. L. Fang , Energy Storage Mater. 2022, 49, 236.
|
[28] |
Z. F. Li , Q. H. Zeng , Y. Yu , Y. Liu , A. Q. Chen , J. Z. Guan , H. H. Wang , W. Liu , X. Liu , X. F. Liu , L. Y. Zhang , Chem. Eng. J. 2023, 452, 139366.
|
[29] |
C. S. Cheng , S. H. Chung , Batter. Supercaps 2022, 5, e202100323.
|
[30] |
J. P. Contour , G. Mouvier , M. Hoogewys , C. Leclere , J. Catal. 1977, 48, 217.
|
[31] |
J. Xu , D. W. Su , W. X. Zhang , W. Z. Bao , G. X. Wang , J. Mater. Chem. A 2016, 4, 17381.
|
[32] |
J. Y. Jin , Z. W. Wang , R. Wang , J. J. Wang , Z. D. Huang , Y. W. Ma , H. Li , S. H. Wei , X. Huang , J. X. Yan , S. Z. Li , W. Huang , Adv. Funct. Mater. 2019, 29, 1807441.
|
[33] |
S. Contarini , J. W. Rabalais , J. Electron. Spectrosc. 1985, 35, 191.
|
[34] |
Y. J. Liu , H. Gou , B. H. Zhang , G. Y. Wen , R. Vajtai , L. Wu , P. M. Ajayan , L. Wang , Batter. Supercaps 2020, 3, 1201.
|
[35] |
W. J. Zhang , X. Feng , Z. X. Mao , J. Li , Z. D. Wei , Adv. Funct. Mater. 2022, 32, 2204110.
|
[36] |
L. L. Zheng , J. Y. Xie , X. H. Liu , C. Yang , W. Zheng , J. Zhang , ACS Appl. Mater. Interfaces 2020, 12, 46267.
|
[37] |
M. Q. Gao , W. Y. Zhou , Y. X. Mo , T. Sheng , Y. H. Deng , L. Z. Chen , K. Wang , Y. L. Tan , H. Q. Zhou , Adv. Powder Mater. 2022, 1, 100006.
|
[38] |
J. L. Yang , S. X. Zhao , Y. M. Lu , X. T. Zeng , W. Lv , C. Z. Cao , Nano Energy 2020, 68, 104356.
|
[39] |
C. X. Zhao , X. Y. Li , M. Zhao , Z. X. Chen , Y. W. Song , W. J. Chen , J. N. Liu , B. Wang , X. Q. Zhang , C. M. Chen , B. Q. Li , J. Q. Huang , Q. Zhang , J. Am. Chem. Soc. 2021, 143, 19865.
|
[40] |
Z. X. Shi , Z. T. Sun , J. S. Cai , X. Z. Yang , C. H. Wei , M. L. Wang , Y. F. Ding , J. Y. Sun , Adv. Mater. 2021, 33, 2103050.
|
[41] |
B. Wang , L. Wang , D. Ding , Y. J. Zhai , F. B. Wang , Z. X. Jing , X. F. Yang , Y. Y. Kong , Y. T. Qian , L. Q. Xu , Adv. Mater. 2022, 34, 2204403.
|
[42] |
T. Feng , T. Zhao , N. X. Zhang , Y. Z. Duan , L. Li , F. Wu , R. J. Chen , Adv. Funct. Mater. 2022, 32, 2202766.
|
[43] |
H. D. Shi , X. J. Zhao , Z. S. Wu , Y. F. Dong , P. F. Lu , J. Chen , W. C. Ren , H. M. Cheng , X. H. Bao , Nano Energy 2019, 60, 743.
|
[44] |
W. X. Hua , H. Li , C. Pei , J. Y. Xia , Y. F. Sun , C. Zhang , W. Lv , Y. Tao , Y. Jiao , B. S. Zhang , S. Z. Qiao , Y. Wan , Q. H. Yang , Adv. Mater. 2021, 33, 2101006.
|
[45] |
K. Park , B. Y. Chang , S. Hwang , ACS Omega 2019, 4, 19307.
|
[46] |
M. Hagen , P. Schiffels , M. Hammer , S. Dörfler , J. Tübke , M. J. Hoffmann , H. Althues , S. Kaskel , J. Electrochem. Soc. 2013, 160, A1205.
|
[47] |
S. Y. Lang , S. H. Yu , X. R. Feng , M. R. Krumov , H. D. Abruña , Nat. Commun. 2022, 13, 4811.
|
/
〈 | 〉 |