Intermolecular Acid–Base-Pairs Containing Poly (p-Terphenyl-co-Isatin Piperidinium) for High Temperature Proton Exchange Membrane Fuel Cells
Xiaofeng Hao, Zhen Li, Min Xiao, Zhiheng Huang, Dongmei Han, Sheng Huang, Wei Liu, Shuanjin Wang, Yuezhong Meng
Intermolecular Acid–Base-Pairs Containing Poly (p-Terphenyl-co-Isatin Piperidinium) for High Temperature Proton Exchange Membrane Fuel Cells
How to optimize and regulate the distribution of phosphoric acid in matrix, and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane (HT-PEMs) fuel cell are significant challenges. Herein, bifunctional poly (p-terphenyl-co-isatin piperidinium) copolymer with tethered phosphonic acid (t-PA) and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs. The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport. Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid (f-PA) anchored by the tertiary amine base groups, but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation. Thorough the design of the structure, the bifunctional copolymers with lower PA uptake level (<100%) display prominent proton conductivities and peak power densities (99 mS cm−1, 812 mW cm−2 at 160 ℃), along with lower PA leaching and higher voltage stability, which is a top leading result in disclosed literature. The results demonstrate that the design of intermolecular acid–base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane, realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs.
bifunctional copolymer / high temperature proton exchange membrane / intermolecular acid–base-pairs / phosphonic acid retention / phosphonic acid uptake level
[1] |
R. Haider , Y. Wen , Z. F. Ma , D. P. Wilkinson , L. Zhang , X. Yuan , S. Song , J. Zhang , Chem. Soc. Rev. 2021, 50, 1138.
|
[2] |
K. Jiao , J. Xuan , Q. Du , Z. Bao , B. Xie , B. Wang , Y. Zhao , L. Fan , H. Wang , Z. Hou , S. Huo , N. P. Brandon , Y. Yin , M. D. Guiver , Nature 2021, 595, 361.
|
[3] |
Y. Cai , Z. Yue , Q. Jiang , S. Xu , J. Energy Chem. 2018, 27, 820.
|
[4] |
Z. Yue , Y.-B. Cai , S. Xu , J. Power Sources 2015, 286, 571.
|
[5] |
J. A. Asensio , E. M. Sanchez , P. Gomez-Romero , Chem. Soc. Rev. 2010, 39, 3210.
|
[6] |
C. Laberty-Robert , K. Valle , F. Pereira , C. Sanchez , Chem. Soc. Rev. 2011, 40, 961.
|
[7] |
M. R. Berber , N. Nakashima , J. Membr. Sci. 2019, 591, 117354.
|
[8] |
E. Qu , X. Hao , M. Xiao , D. Han , S. Huang , Z. Huang , S. Wang , Y. Meng , J. Power Sources 2022, 533, 231386.
|
[9] |
Z. Yue , Y.-B. Cai , S. Xu , J. Membr. Sci. 2016, 501, 220.
|
[10] |
C. Y. Wong , W. Y. Wong , K. Ramya , M. Khalid , K. S. Loh , W. R. W. Daud , K. L. Lim , R. Walvekar , A. A. H. Kadhum , Int. J. Hydrog. Energy 2019, 44, 6116.
|
[11] |
V. Vijayakumar , K. Kim , S. Y. Nam , Angew. Chem. Int. Ed. 2019, 30, 643.
|
[12] |
M. Schuster , T. Rager , A. Noda , K. D. Kreuer , J. Maier , Fuel Cells 2005, 5, 355.
|
[13] |
J. Chen , L. Wang , L. Wang , ACS Appl. Mater. Interfaces 2020, 12, 41350.
|
[14] |
X. Zhang , Q. Liu , L. Xia , D. Huang , X. Fu , R. Zhang , S. Hu , F. Zhao , X. Li , X. Bao , J. Membr. Sci. 2019, 574, 282.
|
[15] |
S. Maity , S. Singha , T. Jana , Polymer 2015, 66, 76.
|
[16] |
E. Abouzari Lotf , H. Ghassemi , A. Shockravi , T. Zawodzinski , D. Schiraldi , Polymer 2011, 52, 4709.
|
[17] |
V. Atanasov , D. Gudat , B. Ruffmann , J. Kerres , Eur. Polym. J. 2013, 49, 3977.
|
[18] |
K. D. Kreuer , Chem. Mater. 2013, 26, 361.
|
[19] |
R. Singh , D. Kim , Nano Energy 2022, 92, 106690.
|
[20] |
V. Atanasov , A. S. Lee , E. J. Park , S. Maurya , E. D. Baca , C. Fujimoto , M. Hibbs , I. Matanovic , J. Kerres , Y. S. Kim , Nat. Mater. 2021, 20, 370.
|
[21] |
X. Hao , Z. Li , M. Xiao , D. Han , S. Huang , G. Xi , S. Wang , Y. Meng , J. Mater. Chem. A 2022, 10, 10916.
|
[22] |
N. R. Kang , T. H. Pham , H. Nederstedt , P. Jannasch , J. Membr. Sci. 2021, 623, 119074.
|
[23] |
S. Jang , S. Y. Kim , H. Y. Jung , M. J. Park , Macromolecules 2018, 51, 1120.
|
[24] |
H. Y. Jung , S. Y. Kim , O. Kim , M. J. Park , Macromolecules 2015, 48, 6142.
|
[25] |
T. Rager , M. Schuster , H. Steininger , K. D. Kreuer , Adv. Mater. 2007, 19, 3317.
|
[26] |
A. Staiger , B. A. Paren , R. Zunker , S. Hoang , M. Haussler , K. I. Winey , S. Mecking , J. Am. Chem. Soc. 2021, 143, 16725.
|
[27] |
S. Zhang , X. Zhu , C. Jin , J. Mater. Chem. A 2019, 7, 6883.
|
[28] |
X. Hu , Y. Huang , L. Liu , Q. Ju , X. Zhou , X. Qiao , Z. Zheng , N. Li , J. Membr. Sci. 2021, 621, 118964.
|
[29] |
X. Zhou , L. Wu , G. Zhang , R. Li , X. Hu , X. Chang , Y. Shen , L. Liu , N. Li , J. Membr. Sci. 2021, 631, 119335.
|
[30] |
E. Abouzari-Lotf , H. Ghassemi , S. Mehdipour-Ataei , A. Shockravi , J. Membr. Sci. 2016, 516, 74.
|
[31] |
P. Wang , J. W. Peng , B. B. Yin , X. Z. Fu , L. Wang , J. L. Luo , X. J. Peng , J. Mater. Chem. A 2021, 9, 26345.
|
[32] |
H. Nguyen , C. Klose , L. Metzler , S. Vierrath , M. Breitwieser , Adv. Energy Mater. 2022, 12, 2103559.
|
[33] |
D. Aili , L. N. Cleemann , Q. F. Li , J. O. Jensen , E. Christensen , N. J. Bjerrum , J. Mater. Chem. A 2012, 22, 5444.
|
[34] |
F. X. Liu , S. Wang , D. Wang , G. Liu , Y. H. Cui , D. Liang , X. D. Wang , Z. P. Yong , Z. Wang , J. Power Sources 2021, 494, 229732.
|
[35] |
N. Chen , C. Hu , H. H. Wang , S. P. Kim , H. M. Kim , W. H. Lee , J. Y. Bae , J. H. Park , Y. M. Lee , Angew. Chem. Int. Ed. 2021, 60, 7710.
|
[36] |
A. Z. Al Munsur , B. H. Goo , Y. Kim , O. J. Kwon , S. Y. Paek , S. Y. Lee , H. J. Kim , T. H. Kim , ACS Appl. Mater. Interfaces 2021, 13, 28188.
|
[37] |
M. Hara , D. Hattori , J. Inukai , B. Bae , T. Hoshi , M. Hara , K. Miyatake , M. Watanabe , J. Phys. Chem. B 2013, 117, 3892.
|
[38] |
M. K. Song , H. Li , J. Li , D. Zhao , J. Wang , M. Liu , Adv. Mater. 2014, 26, 1277.
|
[39] |
Y. Liu , J. Chen , X. Fu , D. Liu , J. Liu , L. Wang , J. Luo , X. Peng , J. Power Sources 2021, 507, 230316.
|
[40] |
K. Seo , K. H. Nam , H. Han , Sci. Rep. 2020, 10, 10352.
|
[41] |
J. Zhang , S. Ricote , P. V. Hendriksen , Y. Chen , Adv. Funct. Mater. 2022, 32, 2111205.
|
[42] |
X. Liu , Y. Li , J. Xue , W. Zhu , J. Zhang , Y. Yin , Y. Qin , K. Jiao , Q. Du , B. Cheng , X. Zhuang , J. Li , M. D. Guiver , Nat. Commun. 2019, 10, 842.
|
[43] |
Y. Wang , P. Sun , Z. Li , H. Guo , H. Pei , X. Yin , ACS Sustain. Chem. Eng. 2021, 9, 2861.
|
[44] |
H. Li , M. Ai , F. Jiang , L. Yu , H. Tu , Q. Yu , H. Wang , J. Membr. Sci. 2011, 196, 4583.
|
[45] |
J. Li , C. W. Moore , D. Bhusari , S. Prakash , P. A. Kohl , J. Electrochem. Soc. 2006, 153, A343.
|
[46] |
X. Wang , B. Shi , H. Yang , J. Guan , X. Liang , C. Fan , X. You , Y. Wang , Z. Zhang , H. Wu , T. Cheng , R. Zhang , Z. Jiang , Nat. Commun. 2022, 13, 1020.
|
[47] |
J. Jiang , X. Jiang , M. Xiao , D. Han , S. Wang , Y. Meng , ACS Appl. Energy Mater. 2021, 4, 13316.
|
[48] |
B. Yin , Y. Wu , C. Liu , P. Wang , L. Wang , G. Sun , J. Mater. Chem. A 2021, 9, 3605.
|
[49] |
K. Wang , L. Yang , W. Wei , L. Zhang , G. Chang , J. Membr. Sci. 2018, 549, 23.
|
[50] |
D. Joseph , N. N. Krishnan , D. Henkensmeier , J. H. Jang , S. H. Choi , H.-J. Kim , J. Han , S. W. Nam , J. Mater. Chem. A 2017, 5, 409.
|
[51] |
M. Hu , T. Li , S. Neelakandan , L. Wang , Y. Chen , J. Membr. Sci. 2020, 593, 117435.
|
[52] |
S. Zhou , J. Guan , Z. Li , L. Huang , J. Zheng , S. Li , S. Zhang , J. Mater. Chem. A 2021, 9, 3925.
|
[53] |
H. Tang , K. Geng , L. Wu , J. Liu , Z. Chen , W. You , F. Yan , M. D. Guiver , N. Li , Nat. Energy 2022, 7, 153.
|
[54] |
Y. Jin , T. Wang , X. Che , J. Dong , Q. Li , J. Yang , J. Power Sources 2022, 526, 231131.
|
[55] |
Y. Jin , T. Wang , X. Che , J. Dong , R. Liu , J. Yang , J. Membr. Sci. 2022, 641, 119884.
|
[56] |
M. R. H. Mahran , M. D. Khidre , W. M. Abdou , Phosphorus Sulfur Silicon Relat. Elem. 1995, 101, 17.
|
/
〈 | 〉 |