Intermolecular Acid–Base-Pairs Containing Poly (p-Terphenyl-co-Isatin Piperidinium) for High Temperature Proton Exchange Membrane Fuel Cells

Xiaofeng Hao , Zhen Li , Min Xiao , Zhiheng Huang , Dongmei Han , Sheng Huang , Wei Liu , Shuanjin Wang , Yuezhong Meng

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12621

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) :12621 DOI: 10.1002/eem2.12621
RESEARCH ARTICLE

Intermolecular Acid–Base-Pairs Containing Poly (p-Terphenyl-co-Isatin Piperidinium) for High Temperature Proton Exchange Membrane Fuel Cells

Author information +
History +
PDF

Abstract

How to optimize and regulate the distribution of phosphoric acid in matrix, and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane (HT-PEMs) fuel cell are significant challenges. Herein, bifunctional poly (p-terphenyl-co-isatin piperidinium) copolymer with tethered phosphonic acid (t-PA) and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs. The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport. Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid (f-PA) anchored by the tertiary amine base groups, but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation. Thorough the design of the structure, the bifunctional copolymers with lower PA uptake level (<100%) display prominent proton conductivities and peak power densities (99 mS cm−1, 812 mW cm−2 at 160 ℃), along with lower PA leaching and higher voltage stability, which is a top leading result in disclosed literature. The results demonstrate that the design of intermolecular acid–base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane, realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs.

Keywords

bifunctional copolymer / high temperature proton exchange membrane / intermolecular acid–base-pairs / phosphonic acid retention / phosphonic acid uptake level

Cite this article

Download citation ▾
Xiaofeng Hao, Zhen Li, Min Xiao, Zhiheng Huang, Dongmei Han, Sheng Huang, Wei Liu, Shuanjin Wang, Yuezhong Meng. Intermolecular Acid–Base-Pairs Containing Poly (p-Terphenyl-co-Isatin Piperidinium) for High Temperature Proton Exchange Membrane Fuel Cells. Energy & Environmental Materials, 2024, 7(3): 12621 DOI:10.1002/eem2.12621

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Haider , Y. Wen , Z. F. Ma , D. P. Wilkinson , L. Zhang , X. Yuan , S. Song , J. Zhang , Chem. Soc. Rev. 2021, 50, 1138.

[2]

K. Jiao , J. Xuan , Q. Du , Z. Bao , B. Xie , B. Wang , Y. Zhao , L. Fan , H. Wang , Z. Hou , S. Huo , N. P. Brandon , Y. Yin , M. D. Guiver , Nature 2021, 595, 361.

[3]

Y. Cai , Z. Yue , Q. Jiang , S. Xu , J. Energy Chem. 2018, 27, 820.

[4]

Z. Yue , Y.-B. Cai , S. Xu , J. Power Sources 2015, 286, 571.

[5]

J. A. Asensio , E. M. Sanchez , P. Gomez-Romero , Chem. Soc. Rev. 2010, 39, 3210.

[6]

C. Laberty-Robert , K. Valle , F. Pereira , C. Sanchez , Chem. Soc. Rev. 2011, 40, 961.

[7]

M. R. Berber , N. Nakashima , J. Membr. Sci. 2019, 591, 117354.

[8]

E. Qu , X. Hao , M. Xiao , D. Han , S. Huang , Z. Huang , S. Wang , Y. Meng , J. Power Sources 2022, 533, 231386.

[9]

Z. Yue , Y.-B. Cai , S. Xu , J. Membr. Sci. 2016, 501, 220.

[10]

C. Y. Wong , W. Y. Wong , K. Ramya , M. Khalid , K. S. Loh , W. R. W. Daud , K. L. Lim , R. Walvekar , A. A. H. Kadhum , Int. J. Hydrog. Energy 2019, 44, 6116.

[11]

V. Vijayakumar , K. Kim , S. Y. Nam , Angew. Chem. Int. Ed. 2019, 30, 643.

[12]

M. Schuster , T. Rager , A. Noda , K. D. Kreuer , J. Maier , Fuel Cells 2005, 5, 355.

[13]

J. Chen , L. Wang , L. Wang , ACS Appl. Mater. Interfaces 2020, 12, 41350.

[14]

X. Zhang , Q. Liu , L. Xia , D. Huang , X. Fu , R. Zhang , S. Hu , F. Zhao , X. Li , X. Bao , J. Membr. Sci. 2019, 574, 282.

[15]

S. Maity , S. Singha , T. Jana , Polymer 2015, 66, 76.

[16]

E. Abouzari Lotf , H. Ghassemi , A. Shockravi , T. Zawodzinski , D. Schiraldi , Polymer 2011, 52, 4709.

[17]

V. Atanasov , D. Gudat , B. Ruffmann , J. Kerres , Eur. Polym. J. 2013, 49, 3977.

[18]

K. D. Kreuer , Chem. Mater. 2013, 26, 361.

[19]

R. Singh , D. Kim , Nano Energy 2022, 92, 106690.

[20]

V. Atanasov , A. S. Lee , E. J. Park , S. Maurya , E. D. Baca , C. Fujimoto , M. Hibbs , I. Matanovic , J. Kerres , Y. S. Kim , Nat. Mater. 2021, 20, 370.

[21]

X. Hao , Z. Li , M. Xiao , D. Han , S. Huang , G. Xi , S. Wang , Y. Meng , J. Mater. Chem. A 2022, 10, 10916.

[22]

N. R. Kang , T. H. Pham , H. Nederstedt , P. Jannasch , J. Membr. Sci. 2021, 623, 119074.

[23]

S. Jang , S. Y. Kim , H. Y. Jung , M. J. Park , Macromolecules 2018, 51, 1120.

[24]

H. Y. Jung , S. Y. Kim , O. Kim , M. J. Park , Macromolecules 2015, 48, 6142.

[25]

T. Rager , M. Schuster , H. Steininger , K. D. Kreuer , Adv. Mater. 2007, 19, 3317.

[26]

A. Staiger , B. A. Paren , R. Zunker , S. Hoang , M. Haussler , K. I. Winey , S. Mecking , J. Am. Chem. Soc. 2021, 143, 16725.

[27]

S. Zhang , X. Zhu , C. Jin , J. Mater. Chem. A 2019, 7, 6883.

[28]

X. Hu , Y. Huang , L. Liu , Q. Ju , X. Zhou , X. Qiao , Z. Zheng , N. Li , J. Membr. Sci. 2021, 621, 118964.

[29]

X. Zhou , L. Wu , G. Zhang , R. Li , X. Hu , X. Chang , Y. Shen , L. Liu , N. Li , J. Membr. Sci. 2021, 631, 119335.

[30]

E. Abouzari-Lotf , H. Ghassemi , S. Mehdipour-Ataei , A. Shockravi , J. Membr. Sci. 2016, 516, 74.

[31]

P. Wang , J. W. Peng , B. B. Yin , X. Z. Fu , L. Wang , J. L. Luo , X. J. Peng , J. Mater. Chem. A 2021, 9, 26345.

[32]

H. Nguyen , C. Klose , L. Metzler , S. Vierrath , M. Breitwieser , Adv. Energy Mater. 2022, 12, 2103559.

[33]

D. Aili , L. N. Cleemann , Q. F. Li , J. O. Jensen , E. Christensen , N. J. Bjerrum , J. Mater. Chem. A 2012, 22, 5444.

[34]

F. X. Liu , S. Wang , D. Wang , G. Liu , Y. H. Cui , D. Liang , X. D. Wang , Z. P. Yong , Z. Wang , J. Power Sources 2021, 494, 229732.

[35]

N. Chen , C. Hu , H. H. Wang , S. P. Kim , H. M. Kim , W. H. Lee , J. Y. Bae , J. H. Park , Y. M. Lee , Angew. Chem. Int. Ed. 2021, 60, 7710.

[36]

A. Z. Al Munsur , B. H. Goo , Y. Kim , O. J. Kwon , S. Y. Paek , S. Y. Lee , H. J. Kim , T. H. Kim , ACS Appl. Mater. Interfaces 2021, 13, 28188.

[37]

M. Hara , D. Hattori , J. Inukai , B. Bae , T. Hoshi , M. Hara , K. Miyatake , M. Watanabe , J. Phys. Chem. B 2013, 117, 3892.

[38]

M. K. Song , H. Li , J. Li , D. Zhao , J. Wang , M. Liu , Adv. Mater. 2014, 26, 1277.

[39]

Y. Liu , J. Chen , X. Fu , D. Liu , J. Liu , L. Wang , J. Luo , X. Peng , J. Power Sources 2021, 507, 230316.

[40]

K. Seo , K. H. Nam , H. Han , Sci. Rep. 2020, 10, 10352.

[41]

J. Zhang , S. Ricote , P. V. Hendriksen , Y. Chen , Adv. Funct. Mater. 2022, 32, 2111205.

[42]

X. Liu , Y. Li , J. Xue , W. Zhu , J. Zhang , Y. Yin , Y. Qin , K. Jiao , Q. Du , B. Cheng , X. Zhuang , J. Li , M. D. Guiver , Nat. Commun. 2019, 10, 842.

[43]

Y. Wang , P. Sun , Z. Li , H. Guo , H. Pei , X. Yin , ACS Sustain. Chem. Eng. 2021, 9, 2861.

[44]

H. Li , M. Ai , F. Jiang , L. Yu , H. Tu , Q. Yu , H. Wang , J. Membr. Sci. 2011, 196, 4583.

[45]

J. Li , C. W. Moore , D. Bhusari , S. Prakash , P. A. Kohl , J. Electrochem. Soc. 2006, 153, A343.

[46]

X. Wang , B. Shi , H. Yang , J. Guan , X. Liang , C. Fan , X. You , Y. Wang , Z. Zhang , H. Wu , T. Cheng , R. Zhang , Z. Jiang , Nat. Commun. 2022, 13, 1020.

[47]

J. Jiang , X. Jiang , M. Xiao , D. Han , S. Wang , Y. Meng , ACS Appl. Energy Mater. 2021, 4, 13316.

[48]

B. Yin , Y. Wu , C. Liu , P. Wang , L. Wang , G. Sun , J. Mater. Chem. A 2021, 9, 3605.

[49]

K. Wang , L. Yang , W. Wei , L. Zhang , G. Chang , J. Membr. Sci. 2018, 549, 23.

[50]

D. Joseph , N. N. Krishnan , D. Henkensmeier , J. H. Jang , S. H. Choi , H.-J. Kim , J. Han , S. W. Nam , J. Mater. Chem. A 2017, 5, 409.

[51]

M. Hu , T. Li , S. Neelakandan , L. Wang , Y. Chen , J. Membr. Sci. 2020, 593, 117435.

[52]

S. Zhou , J. Guan , Z. Li , L. Huang , J. Zheng , S. Li , S. Zhang , J. Mater. Chem. A 2021, 9, 3925.

[53]

H. Tang , K. Geng , L. Wu , J. Liu , Z. Chen , W. You , F. Yan , M. D. Guiver , N. Li , Nat. Energy 2022, 7, 153.

[54]

Y. Jin , T. Wang , X. Che , J. Dong , Q. Li , J. Yang , J. Power Sources 2022, 526, 231131.

[55]

Y. Jin , T. Wang , X. Che , J. Dong , R. Liu , J. Yang , J. Membr. Sci. 2022, 641, 119884.

[56]

M. R. H. Mahran , M. D. Khidre , W. M. Abdou , Phosphorus Sulfur Silicon Relat. Elem. 1995, 101, 17.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

412

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/