Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries

Qingwen Li, Yulu Liu, Ziheng Zhang, Jinjie Chen, Zelong Yang, Qibo Deng, Alexander V. Mumyatov, Pavel A. Troshin, Guang He, Ning Hu

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12618. DOI: 10.1002/eem2.12618
RESEARCH ARTICLE

Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries

Author information +
History +

Abstract

It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors, but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals. Herein, we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition, arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution. As a comparison, other metals such as Au, Ag, and Zn have typical diffusion coefficients of 10–20 orders of magnitude lower than that of Hg in the similar solid solution phases. This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm−2. This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.

Keywords

diffusion coefficient / dynamic alloy interfaces / Li dendrites / Li solid solution / uniform Li deposition

Cite this article

Download citation ▾
Qingwen Li, Yulu Liu, Ziheng Zhang, Jinjie Chen, Zelong Yang, Qibo Deng, Alexander V. Mumyatov, Pavel A. Troshin, Guang He, Ning Hu. Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries. Energy & Environmental Materials, 2024, 7(3): 12618 https://doi.org/10.1002/eem2.12618

References

[1]
H. Lee , H.-S. Lim , X. Ren , L. Yu , M. H. Engelhard , K. S. Han , J. Lee , H.-T. Kim , J. Xiao , J. Liu , W. Xu , J.-G. Zhang , ACS Energy Lett. 2018, 3, 2921.
[2]
H. Ye , Z.-J. Zheng , H.-R. Yao , S.-C. Liu , T.-T. Zuo , X.-W. Wu , Y.-X. Yin , N.-W. Li , J.-J. Gu , F.-F. Cao , Y.-G. Guo , Angew. Chem. Int. Ed. 2019, 131, 1106.
[3]
K. Nam , J. Baek , S. Seo , K. Kwak , J. Cha , Appl. Surf. Sci. 2022, 600, 154077.
[4]
J. Zhang , H. Zhang , R. Li , L. Lv , D. Lu , S. Zhang , X. Xiao , S. Geng , F. Wang , T. Deng , L. Chen , X. Fan , J. Energy Chem. 2023, 78, 71.
[5]
K. R. Adair , M. N. Banis , Y. Zhao , T. Bond , R. Li , X. Sun , Adv. Mater. 2020, 32, 2002550.
[6]
M. Agostini , M. Sadd , S. Xiong , C. Cavallo , J. Heo , J. H. Ahn , A. Matic , ChemSusChem 2019, 12, 4176.
[7]
H. Irfan , A. M. Shanmugharaj , Appl. Surf. Sci. 2022, 586, 152806.
[8]
K. Dong , Y. Xu , J. Tan , M. Osenberg , F. Sun , Z. Kochovski , D. T. Pham , S. Mei , A. Hilger , E. Ryan , Y. Lu , J. Banhart , I. Manke , ACS Energy Lett. 2021, 6, 1719.
[9]
S. Park , H.-J. Jin , Y. S. Yun , Adv. Mater. 2020, 32, 2002193.
[10]
P. Shi , X.-B. Cheng , T. Li , R. Zhang , H. Liu , C. Yan , X.-Q. Zhang , J.-Q. Huang , Q. Zhang , Adv. Mater. 2019, 31, 1902785.
[11]
S. Liu , Y. Ma , Z. Zhou , S. Lou , H. Huo , P. Zuo , J. Wang , C. Du , G. Yin , Y. Gao , Energy Storage Mater. 2020, 33, 423.
[12]
P. Bärmann , M. Mohrhardt , J. E. Frerichs , M. Helling , A. Kolesnikov , S. Klabunde , S. Nowak , M. R. Hansen , M. Winter , T. Placke , Adv. Energy Mater. 2021, 11, 2100925.
[13]
M. Wan , S. Kang , L. Wang , H.-W. Lee , G. W. Zheng , Y. Cui , Y. Sun , Nat. Commun. 2020,
CrossRef Google scholar
[14]
Z. Tu , S. Choudhury , M. J. Zachman , S. Wei , K. Zhang , L. F. Kourkoutis , L. A. Archer , Nat. Energy 2018, 3, 310.
[15]
Y. Ding , X. Guo , Y. Qian , L. Xue , A. Dolocan , G. Yu , Adv. Mater. 2020, 32, 2002577.
[16]
H. Zhao , Y. Wei , C. Wang , R. Qiao , W. Yang , P. B. Messersmith , G. Liu , ACS Appl. Mater. Interfaces 2018, 10, 5440.
[17]
Y. Liu , T. Chen , J. Xue , Z. Wang , J. Xing , A. Zhou , J. Li , Electrochim. Acta 2022, 405, 139787.
[18]
S. Chen , X. Yang , J. Zhang , J. Ma , Y. Meng , K. Tao , F. Li , J. Geng , Electrochim. Acta 2021, 368, 137626.
[19]
X. Wu , W. Zhang , N. Wu , S.-S. Pang , Y. Ding , G. He , Adv. Energy Mater. 2021, 11, 2003082.
[20]
S. Jin , Y. Ye , Y. Niu , Y. Xu , H. Jin , J. Wang , Z. Sun , A. Cao , X. Wu , Y. Luo , H. Ji , L.-J. Wan , J. Am. Chem. Soc. 2020, 142, 8818.
[21]
Y. Wang , Y. Guo , J. Zhong , M. Wang , L. Wang , S. Li , S. Chen , H. Deng , Y. Liu , Y. Wu , J. Zhu , B. Lu , J. Energy Chem. 2022, 73, 339.
[22]
Y.-K. Liao , Z. Tong , C.-C. Fang , S.-C. Liao , J.-M. Chen , R.-S. Liu , S.-F. Hu , ACS Appl. Mater. Interfaces 2021, 13, 56181.
[23]
K.-Y. Cho , S.-H. Hong , J. Kwon , H. Song , S. Kim , S. Jo , K. Eom , Appl. Surf. Sci. 2021, 554, 149578.
[24]
F. Ding , W. Xu , G. L. Graff , J. Zhang , M. L. Sushko , X. Chen , Y. Shao , M. H. Engelhard , Z. Nie , J. Xiao , X. Liu , P. V. Sushko , J. Liu , J.-G. Zhang , J. Am. Chem. Soc. 2013, 135, 4450.
[25]
K. Yan , J. Wang , S. Zhao , D. Zhou , B. Sun , Y. Cui , G. Wang , Angew. Chem. Int. Ed. 2019, 131, 11486.
[26]
X.-R. Chen , Y.-X. Yao , C. Yan , R. Zhang , X.-B. Cheng , Q. Zhang , Angew. Chem. Int. Ed. 2020, 59, 7743.
[27]
C. Yang , Y. Yao , S. He , H. Xie , E. Hitz , L. Hu , Adv. Mater. 2017, 29, 1702714.
[28]
E. Lee , K. A. Persson , Nano Lett. 2012, 12, 4624.
[29]
H. Liu , X.-B. Cheng , J.-Q. Huang , S. Kaskel , S. Chou , H. S. Park , Q. Zhang , ACS Mater. Lett. 2019, 1, 217.
[30]
K. Yan , Z. Lu , H.-W. Lee , F. Xiong , P.-C. Hsu , Y. Li , J. Zhao , S. Chu , Y. Cui , Nat. Energy 2016,
CrossRef Google scholar
[31]
S. H. Choi , S. J. Lee , D.-J. Yoo , J. H. Park , J.-H. Park , Y. N. Ko , J. Park , Y.-E. Sung , S.-Y. Chung , H. Kim , J. W. Choi , Adv. Energy Mater. 2019, 9, 1902278.
[32]
P. Gao , H. Wu , X. Zhang , H. Jia , J.-M. Kim , M. H. Engelhard , C. Niu , Z. Xu , J.-G. Zhang , W. Xu , Angew. Chem. Int. Ed. 2021, 60, 16506.
[33]
H. A. Acciari , A. C. Guastaldi , C. M. A. Brett , Electrochim. Acta 2001, 46, 3887.
[34]
Y. Fan , T. Tao , Y. Gao , C. Deng , B. Yu , Y.-L. Chen , S. Lu , S. Huang , Adv. Mater. 2020, 32, 2004798.
[35]
Q. Li , G. He , Y. Ding , Chem. A Eur. J. 2021, 27, 6407.
[36]
G. He , Q. Li , Y. Shen , Y. Ding , Angew. Chem. Int. Ed. 2019, 131, 18637.
[37]
B. Predel , H. Landolt , In Phase equilibria, crystallographic and thermodynamic data of binary alloys, Springer, Landolt 1993.
[38]
S. Yuan , J. L. Bao , C. Li , Y. Xia , D. G. Truhlar , Y. Wang , Appl. Mater. Interfaces 2019, 11, 10616.
[39]
M. Huang , Z. Yao , Q. Yang , C. Li , Angew. Chem. Int. Ed. 2021, 133, 14159.
[40]
S. Chi , Q. Wang , B. Han , C. Luo , Y. Jiang , J. Wang , C. Wang , Y. Yu , Y. Deng , Nano Lett. 2020, 20, 2724.
[41]
Y. Zhang , J. Qian , W. Xu , S. M. Russell , X. Chen , E. Nasybulin , P. Bhattacharya , M. H. Engelhard , D. Mei , R. Cao , F. Ding , A. V. Cresce , K. Xu , J.-G. Zhang , Nano Lett. 2014, 14, 6889.
[42]
Z. Li , X. Huang , L. Kong , N. Qin , Z. Wang , L. Yin , Y. Li , Q. Gan , K. Liao , S. Gu , T. Zhang , H. Huang , L. Wang , G. Luo , X. Cheng , Z. Lu , Energy Storage Mater. 2022, 45, 40.
[43]
A. Hightower , C. C. Ahn , B. Fultz , Appl. Phys. Lett. 2000, 77, 238.
[44]
G. Sokolowski , W. Pilz , U. Weser , FEBS Lett. 1974, 48, 222.
[45]
K. N. Wood , G. Teeter , ACS Appl. Energy Mater. 2018, 1, 4493.
[46]
D. A. Porter , K. E. Easterling , Phase Transformations in Metals and Alloys, 2nd ed., Springer, Van Nostrand Reinhold, New York, 1992.
[47]
I. V. Belova , Z.-K. Liu , G. E. Murch , Philos. Mag. Lett. 2021, 101, 123.
[48]
X. Liu , T. J. H. Vlugt , A. Bardow , Ind. Eng. Chem. Res. 2011, 50, 10350.
[49]
C. M. Eastman , Q. Zhang , J.-C. Zhao , J. Phase Equilib. Diff. 2020, 41, 642.
[50]
R. Guo , J. Wu , Y. Ren , Eng. Comput. 2003, 2021, 38.
[51]
S. Chen , L. Wang , R. Shao , J. Zou , R. Cai , J. Lin , C. Zhu , J. Zhang , F. Xu , J. Cao , J. Feng , J. Qi , P. Gao , Nano Energy 2018, 48, 560.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/