Lithium Ion Transport Environment by Molecular Vibrations in Ion-Conducting Glasses
Hiroki Yamada, Koji Ohara, Satoshi Hiroi, Atsushi Sakuda, Kazutaka Ikeda, Takahiro Ohkubo, Kengo Nakada, Hirofumi Tsukasaki, Hiroshi Nakajima, Laszlo Temleitner, Laszlo Pusztai, Shunsuke Ariga, Aoto Matsuo, Jiong Ding, Takumi Nakano, Takuya Kimura, Ryo Kobayashi, Takeshi Usuki, Shuta Tahara, Koji Amezawa, Yoshitaka Tateyama, Shigeo Mori, Akitoshi Hayashi
Lithium Ion Transport Environment by Molecular Vibrations in Ion-Conducting Glasses
Controlling Li ion transport in glasses at atomic and molecular levels is key to realizing all-solid-state batteries, a promising technology for electric vehicles. In this context, Li3PS4 glass, a promising solid electrolyte candidate, exhibits dynamic coupling between the Li+ cation mobility and the PS43− anion libration, which is commonly referred to as the paddlewheel effect. In addition, it exhibits a concerted cation diffusion effect (i.e., a cation–cation interaction), which is regarded as the essence of high Li ion transport. However, the correlation between the Li+ ions within the glass structure can only be vaguely determined, due to the limited experimental information that can be obtained. Here, this study reports that the Li ions present in glasses can be classified by evaluating their valence oscillations via Bader analysis to topologically analyze the chemical bonds. It is found that three types of Li ions are present in Li3PS4 glass, and that the more mobile Li ions (i.e., the Li3-type ions) exhibit a characteristic correlation at relatively long distances of 4.0–5.0 Å. Furthermore, reverse Monte Carlo simulations combined with deep learning potentials that reproduce X-ray, neutron, and electron diffraction pair distribution functions showed an increase in the number of Li3-type ions for partially crystallized glass structures with improved Li ion transport properties. Our results show order within the disorder of the Li ion distribution in the glass by a topological analysis of their valences. Thus, considering the molecular vibrations in the glass during the evaluation of the Li ion valences is expected to lead to the development of new solid electrolytes.
electrolytes / ionic conductors / modeling / molecular dynamics
[1] |
J. M. Tarascon , Interface Mag. 2016, 25, 79.
|
[2] |
R. T. Doucette , M. D. McCulloch , Appl. Energy 2011, 88, 2315.
|
[3] |
J. Lv , R. Zheng , P. Lv , W. Wei , Energy Environ. Mater. 2021, 4, 208.
|
[4] |
D. Cheng , K. Li , H. Zang , J. Chen , Energy Environ. Mater. 2023, 6, e12341.
|
[5] |
N. Peng , W. Kou , W. Wu , S. Guo , Y. Wang , J. Wang , Energy Environ. Mater. 2023, 6, e12280.
|
[6] |
K. Chen , Y. Sun , X. Zhang , J. Liu , H. Xie , Energy Environ. Mater. 2022, 6, e12568.
|
[7] |
T. Hou , Y. Qian , D. Li , B. Xu , Z. Huang , X. Liu , H. Wang , B. Jiang , H. Xu , Y. Huang , Energy Environ. Mater. 2022, 6, e12428.
|
[8] |
B. Roling , V. Miß , J. Kettner , Energy Environ. Mater. 2022, 7, e12533.
|
[9] |
Y. Seino , T. Ota , K. Takada , A. Hayashi , M. Tatsumisago , Energ. Environ. Sci. 2014, 7, 627.
|
[10] |
Z. Liu , W. Fu , E. A. Payzant , X. Yu , Z. Wu , N. J. Dudney , J. Kiggans , K. Hong , A. J. Rondinone , C. Liang , J. Am. Chem. Soc. 2013, 135, 975.
|
[11] |
A. Hayashi , N. Masuzawa , S. Yubuchi , F. Tsuji , C. Hotehama , A. Sakuda , M. Tatsumisago , Nat. Commun. 2019, 10, 5266.
|
[12] |
N. Kamaya , K. Homma , Y. Yamakawa , M. Hirayama , R. Kanno , M. Yonemura , T. Kamiyama , Y. Kato , S. Hama , K. Kawamoto , A. Mitsui , Nat. Mater. 2011, 10, 682.
|
[13] |
Y. Kato , S. Hori , T. Saito , K. Suzuki , M. Hirayama , A. Mitsui , M. Yonemura , H. Iba , R. Kanno , Nat. Energy 2016, 1, 16030.
|
[14] |
K. Ohara , A. Mitsui , M. Mori , Y. Onodera , S. Shiotani , Y. Koyama , Y. Orikasa , M. Murakami , K. Shimoda , K. Mori , T. Fukunaka , H. Arai , Y. Uchimoto , Z. Ogumi , Sci. Rep. 2016, 6, 21302.
|
[15] |
M. A. Kraft , S. P. Culver , M. Calderon , F. Böcher , T. Krauskopf , A. Senyshyn , C. Dietrich , A. Zevalkink , J. Janek , W. G. Zeier , J. Am. Chem. Soc. 2017, 139, 10909.
|
[16] |
M. B. Preefer , J. H. Grebenkemper , C. E. Wilson , M. Everingham , J. A. Cooley , R. Seshadri , ACS Appl. Mater. Interfaces 2021, 13, 57567.
|
[17] |
Y. Onodera , K. Mori , T. Otomo , M. Sugiyama , T. Fukunaga , J. Physical Soc. Japan 2012, 81, 044802.
|
[18] |
B. J. Morgan , Chem. Mater. 2021, 33, 2004.
|
[19] |
N. Adelstein , B. C. Wood , Chem. Mater. 2016, 28, 7218.
|
[20] |
Z. Zhang , P.-N. Roy , H. Li , M. Avdeev , L. F. Nazar , J. Am. Chem. Soc. 2019, 141, 19360.
|
[21] |
J. G. Smith , D. J. Siegel , Nat. Commun. 2020, 11, 1483.
|
[22] |
Q. Zhao , L. Pan , Y. Li , L. Chen , S. Shi , Rare Metals 2018, 37, 497.
|
[23] |
K. Mori , K. Enjuji , S. Murata , K. Shibata , Y. Kawakita , M. Yonemura , Y. Onodera , T. Fukunaga , Phys. Rev. Appl. 2015, 4, 54008.
|
[24] |
M. Matsuura , Y. Fujiwara , H. Moriwake , K. Ohara , Y. Kawakita , Phys. Rev. B 2021, 104, 94305.
|
[25] |
H. Stöffler , T. Zinkevich , M. Yavuz , A. Senyshyn , J. Kulisch , P. Hartmann , T. Adermann , S. Randau , F. H. Richter , J. Janek , S. Indris , H. Ehrenbera , J. Phys. Chem. C 2018, 122, 15954.
|
[26] |
L. Pan , L. Zhang , A. Ye , S. Chi , Z. Zou , B. He , L. Chen , Q. Zhao , D. Wang , S. Shi , J. Mater. 2019, 5, 688.
|
[27] |
B. He , S. Chi , A. Ye , P. Mi , L. Zhang , B. Pu , Z. Zou , Y. Ran , Q. Zhao , D. Wang , W. Zhang , J. Zhao , S. Adams , M. Avdeev , S. Shi , Sci. Data 2020, 7, 151.
|
[28] |
B. He , A. Ye , S. Chi , P. Mi , Y. Ran , L. Zhang , X. Zou , B. Pu , Q. Zhao , Z. Zou , D. Wang , W. Zhang , J. Zhao , M. Avdeev , S. Shi , Sci. Data 2020, 7, 153.
|
[29] |
B. He , P. Mi , A. Ye , S. Chi , Y. Jiao , L. Zhang , B. Pu , Z. Zou , W. Zhang , M. Avdeev , S. Adams , J. Zhao , S. Shi , Acta Mater. 2021, 203, 116490.
|
[30] |
N. W. Ashcroft , N. D. Mermin , Solid State Physics, Harcourt College Publishers, New York 1976.
|
[31] |
T. Ohkubo , K. Ohara , E. Tsuchida , ACS Appl. Mater. Interfaces 2020, 12, 25736.
|
[32] |
Z. Zhang , H. Li , K. Kaup , L. Zhou , P.-N. Roy , L. F. Nazar , Matter 2020, 2, 1667.
|
[33] |
A. Walsh , A. A. Sokol , J. Buckeridge , D. O. Scanlon , C. R. A. Catlow , J. Phys. Chem. Lett. 2017, 8, 2074.
|
[34] |
K. Homma , M. Yonemura , T. Kobayashi , M. Nagao , M. Hirayama , R. Kanno , Solid State Ion. 2011, 182, 53.
|
[35] |
L. van Hove , Phys. Rev. 1954, 95, 249.
|
[36] |
Y. Shinohara , W. Dmowski , T. Iwashita , D. Ishikawa , A. Q. R. Baron , T. Egami , Phys. Rev. Mater. 2019, 3, 65604.
|
[37] |
C. Fonseca Guerra , J. W. Handgraaf , E. J. Baerends , F. M. Bickelhaupt , J. Comput. Chem. 2004, 25, 189.
|
[38] |
W. Tang , E. Sanville , G. Henkelman , J. Phys. Condens. Matter 2009, 21, 84204.
|
[39] |
R. L. McGreevy , L. Pusztai , Mol. Simul. 1988, 1, 359.
|
[40] |
O. Gereben , L. Pusztai , J. Comput. Chem. 2012, 33, 2285.
|
[41] |
J. L. Finney , Proc. R. Soc. London Ser. A 1970, 319, 479.
|
[42] |
V. A. Borodin , Philos. Mag. A 1999, 79, 1887.
|
[43] |
G. Kresse , J. Hafner , Phys. Rev. B 1993, 47, 558.
|
[44] |
G. Kresse , J. Furthmüller , Phys. Rev. B 1996, 54, 11169.
|
[45] |
P. E. Blöchl , Phys. Rev. B 1994, 50, 17953.
|
[46] |
J. P. Perdew , K. Burke , M. Ernzerhof , Phys. Rev. Lett. 1996, 77, 3865.
|
[47] |
G. Kresse , J. Hafner , J. Phys. Condens. Matter 1994, 6, 8245.
|
[48] |
G. Kresse , D. Joubert , Phys. Rev. B 1999, 59, 1758.
|
[49] |
S.-T. Kong , H.-J. Deiseroth , C. Reiner , O. Gun , E. Neumann , C. Ritter , D. Zahn , Chem. A Eur. J. 2010, 16, 2198.
|
[50] |
G. Bergerhoff , R. Hundt , R. Sievers , I. D. Brown , J. Chem. Inf. Comput. Sci. 1983, 23, 66.
|
[51] |
S. Nosé , J. Chem. Phys. 1984, 81, 511.
|
[52] |
W. G. Hoover , Phys. Rev. A 1985, 31, 1695.
|
[53] |
G. Henkelman , A. Arnaldsson , H. Jónsson , Comput. Mater. Sci. 2006, 36, 354.
|
[54] |
E. Sanville , S. D. Kenny , R. Smith , G. Henkelman , J. Comput. Chem. 2007, 28, 899.
|
[55] |
M. Yu , D. R. Trinkle , J. Chem. Phys. 2011, 134, 64111.
|
[56] |
K. Momma , F. Izumi , J. Appl. Cryst. 2011, 44, 1272.
|
[57] |
O. Gereben , P. Jóvári , L. Temleitner , L. Pusztai , J. Optoelectron. Adv. Mater. 2007, 9, 3021.
|
[58] |
N. Artrith , A. Urban , Comput. Mater. Sci. 2016, 114, 135.
|
[59] |
N. Artrith , A. Urban , G. Ceder , Phys. Rev. B 2017, 96, 14112.
|
[60] |
H. Mori , T. Ozaki , Phys. Rev. Mater. 2020, 4, 40601.
|
[61] |
A. P. Thompson , H. M. Aktulga , R. Berger , D. S. Bolintineanu , W. M. Brown , P. S. Crozier , P. J. In’t Veld , A. Kohlmeyer , S. G. Moore , T. D. Nguyen , R. Shan , M. J. Stevens , J. Tranchida , C. Trott , S. J. Plimpton , Comput. Phys. Commun. 2022, 271, 108171.
|
[62] |
A. Hayashi , S. Hama , H. Morimoto , M. Tatsumisago , T. Minami , J. Am. Ceram. Soc. 2001, 84, 477.
|
[63] |
T. E. Faber , J. M. Ziman , Philos. Mag. 1965, 11, 153.
|
[64] |
K. Ohara , S. Tominaka , H. Yamada , M. Takahashi , H. Yamaguchi , F. Utsuno , T. Umeki , A. Yao , K. Nakada , M. Takemoto , S. Hiroi , N. Tsuji , T. Wakihara , J. Synchrotron Radiat. 2018, 25, 1627.
|
[65] |
H. Yamada , K. Nakada , M. Takemoto , K. Ohara , J. Synchrotron Radiat. 2022, 295, 549.
|
/
〈 | 〉 |