A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides
Naifang Hu, Yuan Yang, Lin Li, Yuhan Zhang, Zhiwei Hu, Lan Zhang, Jun Ma, Guanglei Cui
A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage, reduced voltage decay and enhanced rate performance, whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance. Herein, a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process. It realizes not only a stable Li2TiO3 coating layer with 3D diffusion channels for fast Li+ ions transfer, but also dopes partial Ti4+ ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure. Consequently, the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability, elevated thermal stability with decomposition temperature from 289.57 ℃ to 321.72 ℃, and enhanced cycle performance (205.1 mAh g−1 after 150 cycles) with slowed voltage drop (1.67 mV per cycle). This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides, which can facilitate its practical application for developing higher energy density lithium-ion batteries.
full concentration gradient / lithium-rich layered oxides / structure stability / surface modification
[1] |
J. M. Zheng , S. J. Myeong , W. R. Cho , P. F. Yan , J. Xiao , C. M. Wang , J. Cho , J. G. Zhang , Adv. Energy Mater. 2017, 7, 1691284.
|
[2] |
S. J. Hu , A. S. Pillai , G. M. Liang , W. K. Pang , H. Q. Wang , Q. Y. Li , Z. P. Guo , Electrochem. Energy Rev. 2019, 2, 277.
|
[3] |
L. de Biasi , B. Schwarz , T. Brezesinski , P. Hartmann , J. Janek , H. Ehrenberg , Adv. Mater. 2019, 31, 1900985.
|
[4] |
P. K. Nayak , E. M. Erickson , F. Schipper , T. R. Penki , N. Munichandraiah , P. Adelhelm , H. Sclar , F. Amalraj , B. Markovsky , D. Aurbach , Adv. Energy Mater. 2018, 8, 17023397.
|
[5] |
Y. W. Zhai , J. C. Zhang , H. Zhang , X. Z. Liu , C. W. Wang , L. M. Sun , X. F. Liu , J. Electrochem. Soc. 2019, 166, A1323.
|
[6] |
B. H. Song , W. D. Li , S. M. Oh , A. Manthiram , ACS Appl. Mater. Interfaces 2017, 9, 9718.
|
[7] |
M. Zubair , G. Y. Li , B. Y. Wang , L. Wang , H. J. Yu , ACS Appl. Energy Mater. 2019, 2, 503.
|
[8] |
W. Liu , P. Oh , X. Liu , S. Myeong , W. Cho , J. Cho , Adv. Energy Mater. 2015, 5, 1500274.
|
[9] |
Z. H. Sun , L. Q. Xu , C. Q. Dong , H. T. Zhang , M. T. Zhang , Y. Y. Liu , Y. Zhou , Y. Han , Y. S. Chen , J. Mater. Chem. A 2019, 7, 3375.
|
[10] |
B. A. Li , H. J. Yan , J. Ma , P. R. Yu , D. G. Xia , W. F. Huang , W. S. Chu , Z. Y. Wu , Adv. Funct. Mater. 2014, 24, 5112.
|
[11] |
W. He , P. Liu , B. Qu , Z. Zheng , H. Zheng , P. Deng , P. Li , S. Li , H. Huang , L. Wang , Q. Xie , D.-L. Peng , Adv. Sci. 2019, 6, 1802114.
|
[12] |
S. Hu , Y. Li , Y. Chen , J. Peng , T. Zhou , W. K. Pang , C. Didier , V. K. Peterson , H. Wang , Q. Li , Z. Guo , Adv. Energy Mater. 2019, 9, 1901795.
|
[13] |
F. Wu , X. Zhang , T. Zhao , L. Li , M. Xie , R. Chen , ACS Appl. Mater. Interfaces 2015, 7, 3773.
|
[14] |
X. Zhang , X. Xie , R. Yu , J. Zhou , Y. Huang , S. Cao , Y. Wang , K. Tang , C. Wu , X. Wang , ACS Appl. Energy Mater. 2019, 2, 3532.
|
[15] |
D. Wang , X. Zhang , R. Xiao , X. Lu , Y. Li , T. Xu , D. Pan , Y.-S. Hu , Y. Bai , Electrochim. Acta 2018, 265, 244.
|
[16] |
X.-D. Zhang , J.-L. Shi , J.-Y. Liang , Y.-X. Yin , J.-N. Zhang , X.-Q. Yu , Y.-G. Guo , Adv. Mater. 2018, 30, 1801751.
|
[17] |
Y. Su , F. Yuan , L. Chen , Y. Lu , J. Dong , Y. Fang , S. Chen , F. Wu , J. Energy Chem. 2020, 51, 39.
|
[18] |
X. Ju , X. Hou , T. Beuse , Z. Liu , L. Du , J.-P. Brinkmann , E. Paillard , T. Wang , M. Winter , J. Li , ACS Appl. Mater. Interfaces 2020, 12, 43596.
|
[19] |
T. Wu , X. Liu , X. Zhang , Y. Lu , B. Wang , Q. Deng , Y. Yang , E. Wang , Z. Lyu , Y. Li , Y. Wang , Y. Lyu , C. He , Y. Ren , G. Xu , X. Sun , K. Amine , H. Yu , Adv. Mater. 2021, 33, 2001358.
|
[20] |
X. Ju , X. Hou , Z. Liu , H. Zheng , H. Huang , B. Qu , T. Wang , Q. Li , J. Li , J. Power , Sources 2019, 437, 226902.
|
[21] |
J.-L. Shi , D.-D. Xiao , M. Ge , X. Yu , Y. Chu , X. Huang , X.-D. Zhang , Y.-X. Yin , X.-Q. Yang , Y.-G. Guo , L. Gu , L.-J. Wan , Adv. Mater. 2018, 30, 1705575.
|
[22] |
N. Hu , C. Zhang , K. Song , H. Wu , P. Yang , L. Zhang , Chem. Eng. J. 2021, 415, 129042.
|
[23] |
J. Lu , Q. Peng , W. Wang , C. Nan , L. Li , Y. Li , J. Am. Chem. Soc. 2013, 135, 1649.
|
[24] |
H. Deng , P. Nie , H. Luo , Y. Zhang , J. Wang , X. Zhang , J. Mater. Chem. A 2014, 2, 18256.
|
[25] |
M. Vijayakumar , S. Kerisit , Z. Yang , G. L. Graff , J. Liu , J. A. Sears , S. D. Burton , K. M. Rosso , J. Hu , J. Phys. Chem. C 2009, 113, 20108.
|
[26] |
J. Cao , H. Xie , F. Lv , N. Xu , W. S. V. Lee , Y. Ma , Y. Liu , Z. Cheng , L. Chen , ACS Appl. Energy Mater. 2020, 3, 5462.
|
[27] |
J.-Z. Kong , C. Ren , Y.-X. Jiang , F. Zhou , C. Yu , W.-P. Tang , H. Li , S.-Y. Ye , J.-X. Li , J. Solid State Electrochem. 2016, 20, 1435.
|
[28] |
Y. Wang , L. Wang , X. Guo , T. Wu , Y. Yang , B. Wang , E. Wang , H. Yu , ACS Appl. Mater. Interfaces 2020, 12, 8306.
|
[29] |
R.-P. Qing , J.-L. Shi , D.-D. Xiao , X.-D. Zhang , Y.-X. Yin , Y.-B. Zhai , L. Gu , Y.-G. Guo , Adv. Energy Mater. 2016, 6, 1501914.
|
[30] |
S. Liu , Z. Liu , X. Shen , X. Wang , S.-C. Liao , R. Yu , Z. Wang , Z. Hu , C.-T. Chen , X. Yu , X. Yang , L. Chen , Adv. Energy Mater. 2019, 9, 19001530.
|
[31] |
L. Ku , Y. Cai , Y. Ma , H. Zheng , P. Liu , Z. Qiao , Q. Xie , L. Wang , D.-L. Peng , Chem. Eng. J. 2019, 370, 499.
|
[32] |
Y. Liu , L.-B. Tang , H.-X. Wei , X.-H. Zhang , Z.-J. He , Y.-J. Li , J.-C. Zheng , Nano Energy 2019, 65, 205111.
|
[33] |
C. Liu , K. Qian , D. Lei , B. Li , F. Kang , Y.-B. He , J. Mater. Chem. A 2018, 6, 65.
|
[34] |
P. Zhang , X. Zhai , H. Huang , J. Zhou , X. Li , Y. He , Z. Guo , Electrochim. Acta 2020, 349, 136402.
|
[35] |
L. Li , L. Wang , X. Zhang , Q. Xue , L. Wei , F. Wu , R. Chen , ACS Appl. Mater. Interfaces 2017, 9, 1516.
|
[36] |
H. Chen , M. S. Islam , Chem. Mater. 2016, 28, 6656.
|
[37] |
A. R. Armstrong , M. Holzapfel , P. Novak , C. S. Johnson , S.-H. Kang , M. M. Thackeray , P. G. Bruce , J. Am. Chem. Soc. 2006, 128, 8694.
|
[38] |
S.-L. Cui , Y.-Y. Wang , S. Liu , G.-R. Li , X.-P. Gao , Electrochim. Acta 2019, 328, 035501.
|
[39] |
H. Yu , Y.-G. So , Y. Ren , T. Wu , G. Guo , R. Xiao , J. Lu , H. Li , Y. Yang , H. Zhou , R. Wang , K. Amine , Y. Ikuhara , J. Am. Chem. Soc. 2018, 140, 15279.
|
[40] |
S.-L. Cui , X. Zhang , X.-W. Wu , S. Liu , Z. Zhou , G.-R. Li , X.-P. Gao , ACS Appl. Mater. Interfaces 2020, 12, 47655.
|
[41] |
Z. Huang , T. Xiong , X. Lin , M. Tian , W. Zeng , J. He , M. Shi , J. Li , G. Zhang , L. Mai , S. Mu , J. Power Sources 2019, 432, 8.
|
[42] |
Y. Ma , P. Liu , Q. Xie , G. Zhang , H. Zheng , Y. Cai , Z. Li , L. Wang , Z.-Z. Zhu , L. Mai , D.-L. Peng , Nano Energy 2019, 59, 184.
|
[43] |
D. Mohanty , S. Kalnaus , R. A. Meisner , K. J. Rhodes , J. Li , E. A. Payzant , D. L. Wood III , C. Daniel , J. Power Sources 2013, 229, 239.
|
[44] |
Q. Wu , X. Zhang , S. Sun , N. Wan , D. Pan , Y. Bai , H. Zhu , Y.-S. Hu , S. Dai , Nanoscale 2015, 7, 15609.
|
[45] |
J.-L. Shi , D.-D. Xiao , X.-D. Zhang , Y.-X. Yin , Y.-G. Guo , L. Gu , L.-J. Wan , Nano Res. 2017, 10, 4201.
|
[46] |
S. Pang , K. Xu , Y. Wang , X. Shen , W. Wang , Y. Su , M. Zhu , X. Xi , J. Power Sources 2017, 365, 68.
|
/
〈 | 〉 |