A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides

Naifang Hu , Yuan Yang , Lin Li , Yuhan Zhang , Zhiwei Hu , Lan Zhang , Jun Ma , Guanglei Cui

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12610

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12610 DOI: 10.1002/eem2.12610
RESEARCH ARTICLE

A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides

Author information +
History +
PDF

Abstract

Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage, reduced voltage decay and enhanced rate performance, whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance. Herein, a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process. It realizes not only a stable Li2TiO3 coating layer with 3D diffusion channels for fast Li+ ions transfer, but also dopes partial Ti4+ ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure. Consequently, the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability, elevated thermal stability with decomposition temperature from 289.57 ℃ to 321.72 ℃, and enhanced cycle performance (205.1 mAh g−1 after 150 cycles) with slowed voltage drop (1.67 mV per cycle). This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides, which can facilitate its practical application for developing higher energy density lithium-ion batteries.

Keywords

full concentration gradient / lithium-rich layered oxides / structure stability / surface modification

Cite this article

Download citation ▾
Naifang Hu, Yuan Yang, Lin Li, Yuhan Zhang, Zhiwei Hu, Lan Zhang, Jun Ma, Guanglei Cui. A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides. Energy & Environmental Materials, 2024, 7(3): 12610 DOI:10.1002/eem2.12610

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. M. Zheng , S. J. Myeong , W. R. Cho , P. F. Yan , J. Xiao , C. M. Wang , J. Cho , J. G. Zhang , Adv. Energy Mater. 2017, 7, 1691284.

[2]

S. J. Hu , A. S. Pillai , G. M. Liang , W. K. Pang , H. Q. Wang , Q. Y. Li , Z. P. Guo , Electrochem. Energy Rev. 2019, 2, 277.

[3]

L. de Biasi , B. Schwarz , T. Brezesinski , P. Hartmann , J. Janek , H. Ehrenberg , Adv. Mater. 2019, 31, 1900985.

[4]

P. K. Nayak , E. M. Erickson , F. Schipper , T. R. Penki , N. Munichandraiah , P. Adelhelm , H. Sclar , F. Amalraj , B. Markovsky , D. Aurbach , Adv. Energy Mater. 2018, 8, 17023397.

[5]

Y. W. Zhai , J. C. Zhang , H. Zhang , X. Z. Liu , C. W. Wang , L. M. Sun , X. F. Liu , J. Electrochem. Soc. 2019, 166, A1323.

[6]

B. H. Song , W. D. Li , S. M. Oh , A. Manthiram , ACS Appl. Mater. Interfaces 2017, 9, 9718.

[7]

M. Zubair , G. Y. Li , B. Y. Wang , L. Wang , H. J. Yu , ACS Appl. Energy Mater. 2019, 2, 503.

[8]

W. Liu , P. Oh , X. Liu , S. Myeong , W. Cho , J. Cho , Adv. Energy Mater. 2015, 5, 1500274.

[9]

Z. H. Sun , L. Q. Xu , C. Q. Dong , H. T. Zhang , M. T. Zhang , Y. Y. Liu , Y. Zhou , Y. Han , Y. S. Chen , J. Mater. Chem. A 2019, 7, 3375.

[10]

B. A. Li , H. J. Yan , J. Ma , P. R. Yu , D. G. Xia , W. F. Huang , W. S. Chu , Z. Y. Wu , Adv. Funct. Mater. 2014, 24, 5112.

[11]

W. He , P. Liu , B. Qu , Z. Zheng , H. Zheng , P. Deng , P. Li , S. Li , H. Huang , L. Wang , Q. Xie , D.-L. Peng , Adv. Sci. 2019, 6, 1802114.

[12]

S. Hu , Y. Li , Y. Chen , J. Peng , T. Zhou , W. K. Pang , C. Didier , V. K. Peterson , H. Wang , Q. Li , Z. Guo , Adv. Energy Mater. 2019, 9, 1901795.

[13]

F. Wu , X. Zhang , T. Zhao , L. Li , M. Xie , R. Chen , ACS Appl. Mater. Interfaces 2015, 7, 3773.

[14]

X. Zhang , X. Xie , R. Yu , J. Zhou , Y. Huang , S. Cao , Y. Wang , K. Tang , C. Wu , X. Wang , ACS Appl. Energy Mater. 2019, 2, 3532.

[15]

D. Wang , X. Zhang , R. Xiao , X. Lu , Y. Li , T. Xu , D. Pan , Y.-S. Hu , Y. Bai , Electrochim. Acta 2018, 265, 244.

[16]

X.-D. Zhang , J.-L. Shi , J.-Y. Liang , Y.-X. Yin , J.-N. Zhang , X.-Q. Yu , Y.-G. Guo , Adv. Mater. 2018, 30, 1801751.

[17]

Y. Su , F. Yuan , L. Chen , Y. Lu , J. Dong , Y. Fang , S. Chen , F. Wu , J. Energy Chem. 2020, 51, 39.

[18]

X. Ju , X. Hou , T. Beuse , Z. Liu , L. Du , J.-P. Brinkmann , E. Paillard , T. Wang , M. Winter , J. Li , ACS Appl. Mater. Interfaces 2020, 12, 43596.

[19]

T. Wu , X. Liu , X. Zhang , Y. Lu , B. Wang , Q. Deng , Y. Yang , E. Wang , Z. Lyu , Y. Li , Y. Wang , Y. Lyu , C. He , Y. Ren , G. Xu , X. Sun , K. Amine , H. Yu , Adv. Mater. 2021, 33, 2001358.

[20]

X. Ju , X. Hou , Z. Liu , H. Zheng , H. Huang , B. Qu , T. Wang , Q. Li , J. Li , J. Power , Sources 2019, 437, 226902.

[21]

J.-L. Shi , D.-D. Xiao , M. Ge , X. Yu , Y. Chu , X. Huang , X.-D. Zhang , Y.-X. Yin , X.-Q. Yang , Y.-G. Guo , L. Gu , L.-J. Wan , Adv. Mater. 2018, 30, 1705575.

[22]

N. Hu , C. Zhang , K. Song , H. Wu , P. Yang , L. Zhang , Chem. Eng. J. 2021, 415, 129042.

[23]

J. Lu , Q. Peng , W. Wang , C. Nan , L. Li , Y. Li , J. Am. Chem. Soc. 2013, 135, 1649.

[24]

H. Deng , P. Nie , H. Luo , Y. Zhang , J. Wang , X. Zhang , J. Mater. Chem. A 2014, 2, 18256.

[25]

M. Vijayakumar , S. Kerisit , Z. Yang , G. L. Graff , J. Liu , J. A. Sears , S. D. Burton , K. M. Rosso , J. Hu , J. Phys. Chem. C 2009, 113, 20108.

[26]

J. Cao , H. Xie , F. Lv , N. Xu , W. S. V. Lee , Y. Ma , Y. Liu , Z. Cheng , L. Chen , ACS Appl. Energy Mater. 2020, 3, 5462.

[27]

J.-Z. Kong , C. Ren , Y.-X. Jiang , F. Zhou , C. Yu , W.-P. Tang , H. Li , S.-Y. Ye , J.-X. Li , J. Solid State Electrochem. 2016, 20, 1435.

[28]

Y. Wang , L. Wang , X. Guo , T. Wu , Y. Yang , B. Wang , E. Wang , H. Yu , ACS Appl. Mater. Interfaces 2020, 12, 8306.

[29]

R.-P. Qing , J.-L. Shi , D.-D. Xiao , X.-D. Zhang , Y.-X. Yin , Y.-B. Zhai , L. Gu , Y.-G. Guo , Adv. Energy Mater. 2016, 6, 1501914.

[30]

S. Liu , Z. Liu , X. Shen , X. Wang , S.-C. Liao , R. Yu , Z. Wang , Z. Hu , C.-T. Chen , X. Yu , X. Yang , L. Chen , Adv. Energy Mater. 2019, 9, 19001530.

[31]

L. Ku , Y. Cai , Y. Ma , H. Zheng , P. Liu , Z. Qiao , Q. Xie , L. Wang , D.-L. Peng , Chem. Eng. J. 2019, 370, 499.

[32]

Y. Liu , L.-B. Tang , H.-X. Wei , X.-H. Zhang , Z.-J. He , Y.-J. Li , J.-C. Zheng , Nano Energy 2019, 65, 205111.

[33]

C. Liu , K. Qian , D. Lei , B. Li , F. Kang , Y.-B. He , J. Mater. Chem. A 2018, 6, 65.

[34]

P. Zhang , X. Zhai , H. Huang , J. Zhou , X. Li , Y. He , Z. Guo , Electrochim. Acta 2020, 349, 136402.

[35]

L. Li , L. Wang , X. Zhang , Q. Xue , L. Wei , F. Wu , R. Chen , ACS Appl. Mater. Interfaces 2017, 9, 1516.

[36]

H. Chen , M. S. Islam , Chem. Mater. 2016, 28, 6656.

[37]

A. R. Armstrong , M. Holzapfel , P. Novak , C. S. Johnson , S.-H. Kang , M. M. Thackeray , P. G. Bruce , J. Am. Chem. Soc. 2006, 128, 8694.

[38]

S.-L. Cui , Y.-Y. Wang , S. Liu , G.-R. Li , X.-P. Gao , Electrochim. Acta 2019, 328, 035501.

[39]

H. Yu , Y.-G. So , Y. Ren , T. Wu , G. Guo , R. Xiao , J. Lu , H. Li , Y. Yang , H. Zhou , R. Wang , K. Amine , Y. Ikuhara , J. Am. Chem. Soc. 2018, 140, 15279.

[40]

S.-L. Cui , X. Zhang , X.-W. Wu , S. Liu , Z. Zhou , G.-R. Li , X.-P. Gao , ACS Appl. Mater. Interfaces 2020, 12, 47655.

[41]

Z. Huang , T. Xiong , X. Lin , M. Tian , W. Zeng , J. He , M. Shi , J. Li , G. Zhang , L. Mai , S. Mu , J. Power Sources 2019, 432, 8.

[42]

Y. Ma , P. Liu , Q. Xie , G. Zhang , H. Zheng , Y. Cai , Z. Li , L. Wang , Z.-Z. Zhu , L. Mai , D.-L. Peng , Nano Energy 2019, 59, 184.

[43]

D. Mohanty , S. Kalnaus , R. A. Meisner , K. J. Rhodes , J. Li , E. A. Payzant , D. L. Wood III , C. Daniel , J. Power Sources 2013, 229, 239.

[44]

Q. Wu , X. Zhang , S. Sun , N. Wan , D. Pan , Y. Bai , H. Zhu , Y.-S. Hu , S. Dai , Nanoscale 2015, 7, 15609.

[45]

J.-L. Shi , D.-D. Xiao , X.-D. Zhang , Y.-X. Yin , Y.-G. Guo , L. Gu , L.-J. Wan , Nano Res. 2017, 10, 4201.

[46]

S. Pang , K. Xu , Y. Wang , X. Shen , W. Wang , Y. Su , M. Zhu , X. Xi , J. Power Sources 2017, 365, 68.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

241

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/