Electrode/Electrolyte Interfacial Chemistry Modulated by Chelating Effect for High-Performance Zinc Anode

Chuanlin Li, Guangmeng Qu, Xixi Zhang, Chenggang Wang, Xijin Xu

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12608. DOI: 10.1002/eem2.12608
RESEARCH ARTICLE

Electrode/Electrolyte Interfacial Chemistry Modulated by Chelating Effect for High-Performance Zinc Anode

Author information +
History +

Abstract

Although Zn metal has been regarded as the most promising anode for aqueous batteries, its practical application is still restricted by side reactions and dendrite growth. Herein, an in-situ solid electrolyte interphase (SEI) film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate (DDTC) additive into 1 M ZnSO4. The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn2+ with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions. As a result, the Zn anode in 1 M ZnSO4 + DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5% and cycling stability (more than 2000 h), especially at high current density (more than 600 cycles at 40 mA cm−2). Moreover, the Zn//MnO2 full cells in the ZnSO4 + DDTC electrolyte exhibit outstanding cyclic stability (with 98.6% capacity retention after 2000 cycles at 10 C). This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.

Keywords

chelating effect / in-situ SEI / ultra-high current density / Zn anodes

Cite this article

Download citation ▾
Chuanlin Li, Guangmeng Qu, Xixi Zhang, Chenggang Wang, Xijin Xu. Electrode/Electrolyte Interfacial Chemistry Modulated by Chelating Effect for High-Performance Zinc Anode. Energy & Environmental Materials, 2024, 7(3): 12608 https://doi.org/10.1002/eem2.12608

References

[1]
M. Li , J. Lu , Z. Chen , K. Amine , Adv. Mater. 2018, 30, 1800561.
[2]
C. Wang , S. Zhao , X. Song , N. Wang , H. Peng , J. Su , S. Zeng , X. Xu , J. Yang , Adv. Energy Mater. 2022, 12, 2200157.
[3]
T. Zhang , Y. Tang , S. Guo , X. Cao , A. Pan , G. Fang , J. Zhou , S. Liang , Energy Environ. Sci. 2020, 13, 4625.
[4]
S. Liu , R. Zhang , J. Mao , Y. Zhao , Q. Cai , Z. Guo , Sci. Adv. 2022, 8, eabn5097.
[5]
Y. Wang , Z. Wang , F. Yang , S. Liu , S. Zhang , J. Mao , Z. Guo , Small 2022, 18, 2107033.
[6]
C. Li , S. Zhao , X. Zhang , G. Qu , X. Li , N. Li , T. Wang , J. Leng , C. Wang , X. Xu , Chem. Eng. J. 2022, 450, 131385.
[7]
L. Ma , S. Chen , N. Li , Z. Liu , Z. Tang , J. Zapien , S. Chen , J. Fan , C. Zhi , Adv. Mater. 2020, 32, 1908121.
[8]
F. Mo , M. Cui , N. He , L. Chen , J. Fei , Z. Ma , S. Yu , J. Wei , Y. Huang , Mater. Res. Lett. 2022, 10, 501.
[9]
Y. Qin , H. Li , C. Han , F. Mo , X. Wang , Adv. Mater. 2022, 34, 2207118.
[10]
P. Shi , Z. Fu , M. Zhou , X. Chen , N. Yao , L. Hou , C. Zhao , B. Li , J. Huang , X. Zhang , Sci. Adv. 2022, 8, eabq3445.
[11]
X. Wang , X. Zhang , G. Zhao , H. Hong , Z. Tang , X. Xu , H. Li , C. Zhi , C. Han , ACS Nano 2022, 16, 6093.
[12]
F. Xie , H. Li , X. Wang , X. Zhi , D. Chao , K. Davey , S. Qiao , Adv. Energy Mater. 2021, 11, 1614.
[13]
P. Xue , C. Guo , L. Li , H. Li , D. Luo , L. Tan , Z. Chen , Adv. Mater. 2022, 34, 2110935.
[14]
W. Dong , J. Shi , T. Wang , Y. Yin , C. Wang , Y. Guo , RSC Adv. 2018, 8, 19157.
[15]
Y. Tian , Y. An , C. Wei , B. Xi , S. Xiong , J. Feng , Y. Qian , ACS Nano 2019, 13, 11936.
[16]
S. Zhou , Y. Wang , H. Lu , Y. Zhang , C. Fu , I. Usman , Z. Liu , M. Feng , G. Fang , X. Cao , Adv. Funct. Mater. 2021, 31, 1616.
[17]
J. Hao , X. Li , S. Zhang , F. Yang , X. Zeng , S. Zhang , G. Bo , C. Wang , Z. Guo , Adv. Funct. Mater. 2020, 30, 1616.
[18]
S. Liu , J. Mao , W. Pang , J. Vongsvivut , X. Zeng , L. Thomsen , Y. Wang , J. Liu , D. Li , Z. Guo , Adv. Funct. Mater. 2021, 31, 2101616.
[19]
Z. Wang , J. Huang , Z. Guo , X. Dong , Y. Liu , Y. Wang , Y. Xia , Joule 2019, 3, 1289.
[20]
Y. Zhang , J. Howe , S. Ben-Yoseph , Y. Wu , N. Liu , ACS Energy Lett. 2021, 6, 404.
[21]
L. Jiang , C. Yan , Y. Yao , W. Cai , J. Huang , Q. Zhang , Angew. Chem. Int. Ed. 2021, 60, 1433.
[22]
X. Zeng , K. Xie , S. Liu , S. Zhang , J. Hao , J. Liu , W. Pang , J. Liu , P. Rao , Q. Wang , J. Mao , Z. Guo , Energy Environ. Sci. 2021, 14, 5947.
[23]
C. Huang , X. Zhao , S. Liu , Y. Hao , Q. Tang , A. Hu , Z. Liu , X. Chen , Adv. Mater. 2021, 33, 2100445.
[24]
Q. Zhang , J. Luan , L. Fu , S. Wu , Y. Tang , X. Ji , H. Wang , Angew. Chem. Int. Ed. 2019, 58, 15841.
[25]
G. Xiang , Y. Meng , G. Qu , J. Yin , B. Teng , Q. Wei , X. Xu , Sci. Bull. 2020, 65, 443.
[26]
P. Sun , L. Ma , W. Zhou , M. Qiu , Z. Wang , D. Chao , W. Mai , Angew. Chem. Int. Ed. 2021, 60, 18247.
[27]
D. Wang , Q. Li , Y. Zhao , H. Hong , H. Li , Z. Huang , G. Liang , Q. Yang , C. Zhi , Adv. Energy Mater. 2022, 12, 2102707.
[28]
J. Zheng , J. Lochala , A. Kwok , Z. Deng , J. Xiao , Adv. Sci. 2017, 4, 702198.
[29]
M. Yan , N. Dong , X. Zhao , Y. Sun , H. Pan , ACS Energy Lett. 2021, 6, 2380.
[30]
H. Huang , D. Xie , J. Zhao , P. Rao , W. Choi , K. Davey , J. Mao , Adv. Energy Mater. 2022, 12, 2201614.
[31]
C. Huang , X. Zhao , Y. Hao , Y. Yang , Y. Qian , G. Chang , Y. Zhang , Q. Tang , A. Hu , X. Chen , Small 2022, 18, 2201613.
[32]
F. Zhao , Z. Jing , X. Guo , J. Li , H. Dong , Y. Tan , L. Liu , Y. Zhou , R. Owen , P. R. Shearing , Energy Storage Mater. 2022, 53, 2405.
[33]
H. Dai , X. Gu , J. Dong , C. Wang , C. Lai , S. Sun , Nat. Commun. 2020, 11, 643.
[34]
S. Yang , H. Du , Y. Li , X. Wu , B. Xiao , Z. He , Q. Zhang , X. Wu , Green Energy Environ. 2022,
CrossRef Google scholar
[35]
Y. Cui , Q. Zhao , X. Wu , X. Chen , J. Yang , Y. Wang , R. Qin , S. Ding , Y. Song , J. Wu , K. Yang , Z. Wang , Z. Mei , Z. Song , H. Wu , Z. Jiang , G. Qian , L. Yang , F. Pan , Angew. Chem. Int. Ed. 2020, 53, 16594.
[36]
F. Ding , W. Xu , G. Graff , J. Zhang , M. Sushko , X. Chen , Y. Shao , M. H. Engelhard , Z. Nie , J. Xiao , J. Am. Chem. Soc. 2013, 135, 4450.
[37]
P. Sun , L. Ma , W. Zhou , M. Qiu , Z. Wang , D. Chao , W. Mai , Angew. Chem. Int. Ed. 2021, 133, 18395.
[38]
Y. Lv , M. Zhao , Y. Du , Y. Kang , Y. Xiao , S. Chen , Energy Environ. Sci. 2022, 15, 4748.
[39]
F. Wang , O. Borodin , M. Ding , M. Gobet , J. Vatamanu , X. Fan , T. Gao , N. Eidson , Y. Liang , W. Sun , Joule 2018, 2, 927.
[40]
H. Huang , D. Xie , J. Zhao , P. Rao , W. Choi , K. Davey , J. Mao , Adv. Energy Mater. 2022, 12, 2202419.
[41]
L. Suo , O. Borodin , Y. Wang , X. Rong , W. Sun , X. Fan , S. Xu , M. Schroeder , A. Cresce , F. Wang , Adv. Energy Mater. 2017, 7, 1701189.
[42]
P. Shi , Z. Fu , M. Zhou , X. Chen , N. Yao , L. Hou , C. Zhao , B. Li , J. Huang , X. Zhang , Sci. Adv. 2022, 8, 2375.
[43]
J. Hao , B. Li , X. Li , X. Zeng , S. Zhang , F. Yang , S. Liu , D. Li , C. Wu , Z. Guo , Adv. Mater. 2020, 32, 2000935.
[44]
J. Yang , Y. Zhang , Z. Li , X. Xu , X. Su , J. Lai , Y. Liu , K. Ding , L. Chen , Y. Cai , Adv. Funct. Mater. 2022, 32, 2209642.
[45]
M. Zhou , S. Guo , J. Li , X. Luo , Z. Liu , T. Zhang , X. Cao , M. Long , B. Lu , A. Pan , Adv. Mater. 2021, 33, 2100935.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/