Defect Engineering in Earth-Abundant Cu2ZnSnSe4 Absorber Using Efficient Alkali Doping for Flexible and Tandem Solar Cell Applications
Muhammad Rehan, Ara Cho, Inyoung Jeong, Kihwan Kim, Asmat Ullah, Jun-Sik Cho, Joo Hyung Park, Yunae Jo, Sung Jun Hong, Seung Kyu Ahn, SeJin Ahn, Jae Ho Yun, Jihye Gwak, Donghyeop Shin
Defect Engineering in Earth-Abundant Cu2ZnSnSe4 Absorber Using Efficient Alkali Doping for Flexible and Tandem Solar Cell Applications
To demonstrate flexible and tandem device applications, a low-temperature Cu2ZnSnSe4 (CZTSe) deposition process, combined with efficient alkali doping, was developed. First, high-quality CZTSe films were grown at 480 ℃ by a single co-evaporation, which is applicable to polyimide (PI) substrate. Because of the alkali-free substrate, Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe. The bulk defect density was significantly reduced by suppression of deep acceptor states after the (NaF + KF) PDTs. Through the low-temperature deposition with (NaF + KF) PDTs, the CZTSe device on glass yields the best efficiency of 8.1% with an improved VOC deficit of 646 mV. The developed deposition technologies have been applied to PI. For the first time, we report the highest efficiency of 6.92% for flexible CZTSe solar cells on PI. Additionally, CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe (~1.0 eV) so that the tandem cell yielded an efficiency of 20%. The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.
alkali doping / Earth-abundant Cu2ZnSnSe4 / flexible solar cells / four-terminal tandem cells / low-temperature process
[1] |
D. Shin, B. Saparov, D. B. Mitzi, Adv. Energy Mater. 2017, 7, 1602366.
|
[2] |
M. Sahu, V. R. Minnam Reddy, B. Patro, C. Park, W. K. Kim, P. Sharma, J. Nanomater. 2022, 12, 1503.
|
[3] |
E. Y. Muslih, K. S. B. Rafiq, M. I. Hossain, M. Shahiduzzaman, M. J. Rashid, T. Rahman, B. Munir, K. Althubeiti, H. I. Alkhammash, H. Abdullah, J. Alloys Compd. 2022, 900, 163457.
|
[4] |
Q. Zhao, H. Shen, K. Gao, Y. Xu, X. Wang, Y. Li, J. Mater. Chem. C 2021, 9, 17531.
|
[5] |
B. Müller, L. Hardt, A. Armbruster, K. Kiefer, C. Reise, Prog. Photovolt. Res. Appl. 2016, 24, 570.
|
[6] |
M. G. Gang, S. W. Shin, C. W. Hong, K. Gurav, J. Gwak, J. H. Yun, J. Y. Lee, J. H. J. G. C. Kim, Green Chem. 2016, 18, 700.
|
[7] |
S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J. H. Yun, Appl. Phys. Lett. 2010, 97, 21905.
|
[8] |
A. Cho, I. Jeong, S. Song, D. Shin, S. Lee, K. Kim, J. H. Yun, J. S. Cho, J. H. Park, Sol. RRL. 2021, 5, 2100485.
|
[9] |
J. Gwak, S. Jung, S. H. Park, S. Ahn, A. Cho, K. Shin, K. H. Yoon, J. H. Yun, Electron. Mater. Lett. 2012, 8, 187.
|
[10] |
M. A. Green, E. D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis, K. Bothe, X. Hao, Prog. Photovoltaics Res. Appl. 2022, 30, 3.
|
[11] |
D.-H. Son, S.-H. Kim, S.-Y. Kim, Y.-I. Kim, J.-H. Sim, S.-N. Park, D.-H. Jeon, D.-K. Hwang, S.-J. Sung, J.-K. Kang, J. Mater. Chem. A 2019, 7, 25279.
|
[12] |
M. Rehan, H. Jeon, Y. Cho, A. Cho, K. Kim, J.-S. Cho, J. H. Yun, S. Ahn, J. Gwak, D. Shin, Energies 2020, 13, 1316.
|
[13] |
I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. Hsu, A. Goodrich, Sol. Energy Mater. Sol. Cells 2012, 101, 154.
|
[14] |
21.4% record efficiency for flexible solar cells, www.empa.ch (n.d.). https://www.empa.ch/web/s604/cigs-efficiency-record-2021. (accessed 25 July 2022).
|
[15] |
M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovoltaics. 2019, 9, 1863.
|
[16] |
M. Boshta, S. Binetti, A. Le Donne, M. Gomaa, M. Acciarri, Mater. Technol. 2017, 32, 251.
|
[17] |
Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells 2010, 94, 2042.
|
[18] |
J. Xu, Z. Cao, Y. Yang, Z. Xie, S. Energy, J. Renew. Sustain. Energy. 2014, 6, 053110.
|
[19] |
I. Becerril-Romero, L. Acebo, F. Oliva, V. Izquierdo-Roca, S. LópezMarino, M. Espíndola-Rodríguez, M. Neuschitzer, Y. Sánchez, M. Placidi, A. P erez-Rodríguez, Prog. Photovoltaics Res. 2018, 26, 55.
|
[20] |
M. A. Shafi, L. Khan, S. Ullah, M. Y. Shafi, A. Bouich, H. Ullah, B. Mari, Optik (Stuttg). 2022, 253, 168568.
|
[21] |
U. Saha, M. K. Alam, RSC Adv. 2017, 7, 4806.
|
[22] |
N. Doumit, K. Soro, A. Ozocak, N. Batut, A. Schellmanns, E. Saintaime, E. Ntsoenzok, Adv. Theory Simul. 2021, 4, 2100099.
|
[23] |
T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, S. J. A. P. L. Guha, Appl. Phys. Lett. 2014, 105, 173902.
|
[24] |
D. Wang, H. Guo, X. Wu, X. Deng, F. Li, Z. Li, F. Lin, Z. Zhu, Y. Zhang, B. Xu, Adv. Funct. Mater. 2022, 32, 2107359.
|
[25] |
K.-J. Yang, S. Kim, S.-Y. Kim, K. Ahn, D.-H. Son, S.-H. Kim, S.-J. Lee, Y.-I. Kim, S.-N. Park, S. Sung, Nat. Commun. 2019, 10 (1), 1.
|
[26] |
M. Rehan, A. Cho, A. M. Amare, K. Kim, J. H. Yun, J.-S. Cho, J. H. Park, J. Gwak, D. Shin, Sol. Energy Mater. Sol. Cells 2021, 228, 111138.
|
[27] |
T. Lee, M. Hamim Sharif, E. Enkhbayar, T. Enkhbat, M. Salahuddin Mina, J. Kim, Sol. RRL 2022, 6, 2100862.
|
[28] |
T.-Y. Lin, I. Khatri, J. Matsuura, K. Shudo, W.-C. Huang, M. Sugiyama, C.-H. Lai, T. Nakada, Nano Energy 2020, 68, 104299.
|
[29] |
J. Kim, G. Y. Kim, T. T. T. Nguyen, S. Yoon, Y.-K. Kim, S.-Y. Lee, M. Kim, D.-H. Cho, Y.-D. Chung, J.-H. Lee, Phys. Chem. Chem. 2020, 22, 7597.
|
[30] |
Y. Wang, S. Lv, Z. J. Li, J. Mater. Sci. Technol. 2022, 96, 179.
|
[31] |
P. Reinhard, B. Bissig, F. Pianezzi, E. Avancini, H. Hagendorfer, D. Keller, P. Fuchs, M. Döbeli, C. Vigo, P. Crivelli, Chem. Mater. 2015, 27, 5755.
|
[32] |
T. Maeda, A. Kawabata, T. Wada, Solid State Phys. 2015, 12, 631.
|
[33] |
S. Zahedi-Azad, M. Maiberg, R. Scheer, Prog. Photovolt. Res. Appl. 2020, 28, 1146.
|
[34] |
Z. Su, G. Liang, P. Fan, J. Luo, Z. Zheng, Z. Xie, W. Wang, S. Chen, J. Hu, Y. Wei, Adv. Mater. 2020, 32, 2000121.
|
[35] |
M. Minbashi, A. Ghobadi, E. Yazdani, A. Ahmadkhan Kordbacheh, A. Hajjiah, Sci. Rep. 2020, 10) (1, 1.
|
[36] |
J. Li, S. Kim, D. Nam, X. Liu, J. Kim, H. Cheong, W. Liu, H. Li, Y. Sun, Y. Zhang, Sol. Energy Mater. Sol. Cells 2017, 159, 447.
|
[37] |
J. Li, D. Wang, X. Li, Y. Zeng, Y. Zhang, Adv. Sci. 2018, 5, 1700744.
|
[38] |
E. Ghorbani, J. Kiss, H. Mirhosseini, M. Schmidt, J. Windeln, T. D. Kühne, C. Felser, J. Phys. Chem. C 2016, 120, 2064.
|
[39] |
M. Han, X. Zhang, Z. J. P. C. C. P. Zeng, Phys. Chem. Chem. Phys. 2017, 19, 17799.
|
[40] |
S. Berman, G. Sai Gautam, E. A. Carter, ACS Sustain. Chem. Eng. 2019, 7, 5792.
|
[41] |
T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, D. Raabe, J. Appl. Phys. 2015, 118, 95302.
|
[42] |
P. Reinhard, A. Chirila, F. Pianezzi, S. Nishiwaki, S. Buecheler, A. N. Tiwari, In 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) IEEE, 2013, 79.
|
[43] |
S. Jung, J. Gwak, J. H. Yun, S. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. Shin, K. Yoon, Thin Solid Films 2013, 535, 52.
|
[44] |
A. Sadono, M. Hino, M. Ichikawa, K. Yamamoto, Y. Kurokawa, M. Konagai, A. Yamada, Jpn. J. Appl. Phys. 2015, 54, 8.
|
/
〈 | 〉 |