Composition Engineering Opens an Avenue Toward Efficient and Sustainable Nitrogen Fixation
Xiaolin Wang, Liming Yang
Composition Engineering Opens an Avenue Toward Efficient and Sustainable Nitrogen Fixation
In this work, we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active sites as exemplified by diatomic metals anchored graphdiyne via the combination of hierarchical high-throughput screening, first-principles calculations, and molecular dynamics simulations. Totally 43 highly efficient catalysts feature ultralow onset potentials (|Uonset| ≤ 0.40 V) with Rh-Hf and Rh-Ta showing negligible onset potentials of 0 and -0.04 V, respectively. Extremely high catalytic activities of Rh-Hf and Rh-Ta can be ascribed to the synergistic effects. When forming heteronuclears, the combinations of relatively weak (such as Rh) and relatively strong (such as Hf or Ta) components usually lead to the optimal strengths of adsorption Gibbs free energies of reaction intermediates. The origin can be ascribed to the mediate d-band centers of Rh-Hf and Rh-Ta, which lead to the optimal adsorption strengths of intermediates, thereby bringing the high catalytic activities. Our work provides a new and general strategy toward the architecture of highly efficient catalysts not only for electrocatalytic nitrogen reduction reaction (eNRR) but also for other important reactions. We expect that our work will boost both experimental and theoretical efforts in this direction.
composition engineering strategy / diatomic catalysts / electrocatalytic nitrogen reduction reaction / first-principles calculations / graphdiyne / hierarchical high-throughput screening / synergistic effects
[1] |
V. Smil, Nature 1999, 400, 415.
|
[2] |
J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636.
|
[3] |
H. Liu, Chin. J. Catal. 2014, 35, 1619.
|
[4] |
R. Lan, S. Tao, Front. Energy Res. 2014, 2, 35.
|
[5] |
J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, 6611.
|
[6] |
T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, R. Schlögl, Angew. Chem. Int. Ed. 2013, 52, 12723.
|
[7] |
R. Schlögl, Angew. Chem. Int. Ed. 2003, 42, 2004.
|
[8] |
Special Issue: Nitrogen Reduction Reaction, Small Methods 2019, 3, 1800251.
|
[9] |
A. J. Martín, T. Shinagawa, J. Pérez-Ramírez, Chem 2019, 5, 263.
|
[10] |
G. Soloveichik, Nat. Catal. 2019, 2, 377.
|
[11] |
V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, M. Stoukides, Joule 2020, 4, 142.
|
[12] |
L. Li, C. Tang, H. Jin, K. Davey, S.-Z. Qiao, Chem 2021, 7, 3232.
|
[13] |
X. Liu, Y. Jiao, Y. Zheng, S.-Z. Qiao, ACS Catal. 2020, 10, 1847.
|
[14] |
H. Li, Z. Zhao, Q. Cai, L. Yin, J. Zhao, J. Mater. Chem. A 2020, 8, 4533.
|
[15] |
J. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480.
|
[16] |
G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev. 2020, 120, 5437.
|
[17] |
B. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. Mac-Farlane, Nat. Catal. 2019, 2, 290.
|
[18] |
E. Skulason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys. 2012, 14, 1235.
|
[19] |
R. R. Schrock, Angew. Chem. Int. Ed. 2008, 47, 5512.
|
[20] |
Special Issue: Heterogeneous Single-Atom Catalysis, Chem. Rev. 2020, 120 (21), 11699 and references therein.
|
[21] |
C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, Y. Li, Chem. Rev. 2018, 118, 7744.
|
[22] |
B. Li, C. Lai, M. Zhang, G. Zeng, S. Liu, D. Huang, L. Qin, X. Liu, H. Yi, F. Xu, N. An, L. Chen, Adv. Energy Mater. 2020, 10, 2000177.
|
[23] |
Y. Fang, Y. Xue, L. Hui, X. Chen, Y. Li, J. Mater. Chem. A 2022, 10, 6073.
|
[24] |
L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am. Chem. Soc. 2019, 141, 10677.
|
[25] |
Y. Li, Q. Zhang, C. Li, H.-N. Fan, W.-B. Luo, H.-K. Liu, S.-X. Dou, J. Mater. Chem. A 2019, 7, 22242.
|
[26] |
D. Ma, Z. Zeng, L. Liu, Y. Jia, J. Energy Chem. 2021, 54, 501.
|
[27] |
Y. Xu, Z. Cai, P. Du, J. Zhou, Y. Pan, P. Wu, C. Cai, J. Mater. Chem. A 2021, 9, 8489.
|
[28] |
Z. Feng, Y. Tang, W. Chen, Y. Li, R. Li, Y. Ma, X. Dai, Phys. Chem. Chem. Phys. 2020, 22, 9216.
|
[29] |
P. Serp, Nanoscale 2021, 13, 5985.
|
[30] |
L. Yu, F. Li, J. Zhao, Z. Chen, Adv. Powder Mater. 2022, 1, 100031.
|
[31] |
H. Yu, Y. Xue, L.Hui, C. Zhang, Y. Fang, Y. Liu, X.Chen, D.Hang, B.Huang, Y. Li, Natl. Sci. Rev. 2021, 8, nwaa213.
|
[32] |
H. Zou, W. Rong, S. Wei, L. Duan, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 29462.
|
[33] |
H. Yu, L. Hui, Y. Xue, Y. Liu, Y. Fang, C. Xing, C. Zhang, D. Zhang, X. Chen, Y. Du, Z. Wang, Y. Gao, B. Huang, Y. Li, Nano Energy 2020, 72, 104667.
|
[34] |
G. Shi, Y. Xie, L. Du, X. Fu, X. Chen, W. Xie, T.Lu, M.Yuan, M.Wang, Angew. Chem. Int. Ed. 2022, 61, e202203569.
|
[35] |
G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
|
[36] |
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
|
[37] |
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
|
[38] |
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
|
[39] |
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
|
[40] |
A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energ. Environ. Sci. 2010, 3, 1311.
|
[41] |
J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 2015, 8, 2180.
|
[42] |
Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/.
|
[43] |
G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
|
[44] |
S. Nosé, J. Chem. Phys. 1984, 81, 511.
|
[45] |
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. Cryst. Mater. 2005, 220, 567.
|
[46] |
T. He, S. K. Matta, G. Will, A. Du, Small Methods 2019, 3, 1800419.
|
[47] |
L. Xu, L.-M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 14091.
|
[48] |
S.-Y. Lv, C.-X. Huang, G. Li, L.-M. Yang, ACS Appl. Mater. Interfaces 2021, 13, 29641.
|
[49] |
M.-R. Zhao, B. Song, L.-M. Yang, ACS Appl. Mater. Interfaces 2021, 13, 26109.
|
[50] |
X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 2019, 141, 9664.
|
[51] |
C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods 2019, 3, 1800376.
|
[52] |
C.-X. Huang, G. Li, L.-M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 608.
|
[53] |
X. Wang, L.-M. Yang, J. Mater. Chem. A 2022, 10, 1481.
|
[54] |
A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, J. K. Nørskov, ACS Catal. 2017, 7, 706.
|
[55] |
N. Cao, G. Zheng, Nano Res. 2018, 11, 2992.
|
[56] |
G. F. Chen, S. Ren, L. Zhang, H. Cheng, Y. Luo, K. Zhu, L. X. Ding, H. Wang, Small Methods 2019, 3, 1800337.
|
[57] |
G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
|
[58] |
V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
|
[59] |
B. Hammer, Y. Morikawa, J. K. Nørskov, Phys. Rev. Lett. 1996, 76, 2141.
|
[60] |
B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71.
|
[61] |
A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, J. Mol. Catal. A Chem. 1997, 115, 421.
|
[62] |
P. Sabatier, Ber. Dtsch. Chem. Ges. 1911, 44, 1984.
|
/
〈 | 〉 |