Suppressing the Undesirable Energy Loss in Solution-Processed Hyperfluorescent OLEDs Employing BODIPY-Based Hybridized Local and Charge-Transfer Emitter
Xuewei Nie, Zafar Mahmood, Denghui Liu, Mengke Li, Dehua Hu, Wencheng Chen, Longjiang Xing, Shijian Su, Yanping Huo, Shaomin Ji
Suppressing the Undesirable Energy Loss in Solution-Processed Hyperfluorescent OLEDs Employing BODIPY-Based Hybridized Local and Charge-Transfer Emitter
Hyperfluorescent organic light-emitting diodes (HF-OLEDs) approach has made it possible to achieve excellent device performance and color purity with low roll-off using noble-metal-free pure organic emitter. Despite significant progress, the performance of HF-OLEDs is still unsatisfactory due to the existence of a competitive dexter energy transfer (DET) pathway. In this contribution, two boron dipyrromethene (BODIPY)-based donor-acceptor emitters (BDP-C-Cz and BDP-N-Cz) with hybridized local and charge transfer characteristics (HLCT) are introduced in the HF-OLED to suppress the exciton loss by dexter mechanism, and a breakthrough performance with low-efficiency roll-off (0.3%) even at high brightness (1000 cd m-2) is achieved. It is demonstrated that the energy loss via the DET channel can be suppressed in HF-OLEDs utilizing the HLCT emitter, as the excitons from the dark triplet state of such emitters are funneled to its emissive singlet state following the hot-exciton mechanism. The developed HF-OLED device has realized a good maximum external quantum efficiency (EQE) of 19.25% at brightness of 1000 cd m-2 and maximum luminance over 60 000 cd m-2, with an emission peak at 602 nm and Commission International de L'Eclairage (CIE) coordinates (0.57, 0.41), which is among the best-achieved results in solution-processed HF-OLEDs. This work presents a viable methodology to suppress energy loss and achieve high performance in the HF-OLEDs.
BODIPY / hyperfluorescence / organic light-emitting diodes / solution-process
[1] |
R. Pode , Renew. Sust. Energ. Rev. 2020, 133, 110043.
|
[2] |
M. Y. Wong , E. Zysman-Colman , Adv. Mater. 2017, 29, 1605444.
|
[3] |
C.-C. Peng , S.-Y. Yang , H.-C. Li , G.-H. Xie , L.-S. Cui , S.-N. Zou , C. Poriel , Z.-Q. Jiang , L.-S. Liao , Adv. Mater. 2020, 32, 2003885.
|
[4] |
Y.-C. Cheng , X.-C. Fan , F. Huang , X. Xiong , J. Yu , K. Wang , C.-S. Lee , X.- H. Zhang , Angew. Chem. Int. Ed. 2022, 61, 202212575.
|
[5] |
G. Hong , X. Gan , C. Leonhardt , Z. Zhang , J. Seibert , J. M. Busch , S. Brase , Adv. Mater. 2021, 33, 2005630.
|
[6] |
X. Yang , H. Guo , X. Xu , Y. Sun , G. Zhou , W. Ma , Z. Wu , Adv. Sci. 2019, 6, 1801930.
|
[7] |
H. Liu , J. Li , W.-C. Chen , Z. Chen , Z. Liu , Q. Zhan , X. Cao , C.-S. Lee , C. Yang , Chem. Eng. J. 2020, 401, 126107.
|
[8] |
J. H. Kim , J. H. Yun , J. Y. Lee , Adv. Opt. Mater. 2018, 6, 1800255.
|
[9] |
Z. Li , D. Yang , C. Han , B. Zhao , H. Wang , Y. Man , P. Ma , P. Chang , D. Ma , H. Xu , Angew. Chem. Int. Ed. 2021, 60, 14846.
|
[10] |
J.-X. Chen , K. Wang , C.-J. Zheng , M. Zhang , Y.-Z. Shi , S.-L. Tao , H. Lin , W. Liu , W.-W. Tao , X.-M. Ou , X.-H. Zhang , Adv. Sci. 2018, 5, 1800436.
|
[11] |
J.-X. Chen , W.-W. Tao , W.-C. Chen , Y.-F. Xiao , K. Wang , C. Cao , J. Yu , S. Li , F.-X. Geng , C. Adachi , C.-S. Lee , X.-H. Zhang , Angew. Chem. Int. Ed. 2019, 58, 14660.
|
[12] |
T. Furukawa , H. Nakanotani , M. Inoue , C. Adachi , Sci. Rep. 2015, 5, 8429.
|
[13] |
C. Xiang , X. Fu , W. Wei , R. Liu , Y. Zhang , V. Balema , B. Nelson , F. So , Adv. Funct. Mater. 2016, 26, 1463.
|
[14] |
E. Cho , M. Hong , Y. S. Yang , Y. J. Cho , V. Coropceanu , J.-L. Brédas , J. Mater. Chem. C. 2022, 10, 4629.
|
[15] |
H. Nakanotani , T. Higuchi , T. Furukawa , K. Masui , K. Morimoto , M. Numata , H. Tanaka , Y. Sagara , T. Yasuda , C. Adachi , Nat. Commun. 2014, 5, 4016.
|
[16] |
M. A. Baldo , M. E. Thompson , S. R. Forrest , Nature 2000, 403, 750.
|
[17] |
X. Song , D. Zhang , Y. Lu , C. Yin , L. Duan , Adv. Mater. 2019, 31, 1901923.
|
[18] |
D. Zhang , X. Song , M. Cai , L. Duan , Adv. Mater. 2018, 30, 1705250.
|
[19] |
P. Wei , D. Zhang , L. Duan , Adv. Funct. Mater. 2020, 30, 1907083.
|
[20] |
N. R. Wallwork , M. Mamada , A. B. Keto , S. K. M. McGregor , A. Shukla , C. Adachi , E. H. Krenske , E. B. Namdas , S.-C. Lo , Macromol. Rapid Commun. 2022, 43, 2200118.
|
[21] |
R. Braveenth , H. Lee , J. D. Park , K. Yang , S. J. Hwang , K. R. Naveen , R. Lampande , J. H. Kwon , Adv. Funct. Mater. 2021, 31, 2105805.
|
[22] |
K. Stavrou , S. Madayanad Suresh , D. Hall , A. Danos , N. A. Kukhta , A. M. Z. Slawin , S. Warriner , D. Beljonne , Y. Olivier , A. Monkman , E. Zysman-Colman , Adv. Opt. Mater. 2022, 10, 2200688.
|
[23] |
N. Aizawa , S. Shikita , T. Yasuda , Chem. Mater. 2017, 29, 7014.
|
[24] |
W. Xie , X. Peng , M. Li , W. Qiu , W. Li , Q. Gu , Y. Jiao , Z. Chen , Y. Gan , K. Liu , S.-J. Su , Adv. Opt. Mater. 2022, 10, 2200665.
|
[25] |
J. Jang , S. Han , H. W. Choi , K. S. Yook , J. Y. Lee , Org. Electron. 2018, 59, 236.
|
[26] |
Y. Zhou , J. W. Kim , M. J. Kim , W.-J. Son , S. Han , H. N. Kim , S. Han , Y. Kim , C. Lee , S.-J. Kim , D. H. Kim , J.-J. Kim , J. Yoon , Org. Lett. 2010, 12, 1272.
|
[27] |
L. Bonardi , H. Kanaan , F. Camerel , P. Jolinat , P. Retailleau , R. Ziessel , Adv. Funct. Mater. 2008, 18, 401.
|
[28] |
M. Poddar , R. Misra , Coord. Chem. Rev. 2020, 421, 213462.
|
[29] |
B. Balónová , H. J. Shepherd , C. J. Serpell , B. A. Blight , Supramol. Chem. 2020, 32, 56.
|
[30] |
D. A. Merkushev , S. D. Usoltsev , Y. S. Marfin , A. P. Pushkarev , D. Volyniuk , J. V. Grazulevicius , E. V. Rumyantsev , Mater. Chem. Phys. 2017, 187, 104.
|
[31] |
X. Song , D. Zhang , Y. Zhang , Y. Lu , L. Duan , Adv. Opt. Mater. 2020, 8, 2000483.
|
[32] |
Y. H. Jung , D. Karthik , H. Lee , J. H. Maeng , K. J. Yang , S. Hwang , J. H. Kwon , ACS Appl. Mater. Inter. 2021, 13, 17882.
|
[33] |
C.-Y. Chan , M. Tanaka , Y.-T. Lee , Y.-W. Wong , H. Nakanotani , T. Hatakeyama , C. Adachi , Nat. Photonics 2021, 15, 203.
|
[34] |
G. Zhao , R. Zhou , G. Zhang , H. Chen , D. Ma , W. Tian , W. Jiang , Y. Sun , J. Mater. Chem. C 2022, 10, 5230.
|
[35] |
F. Khan , E. Urbonas , D. Volyniuk , J. V. Grazulevicius , S. M. Mobin , R. Misra , J. Mater. Chem. C 2020, 8, 13375.
|
[36] |
W. Che , L. Zhang , Y. Li , D. Zhu , Z. Xie , G. Li , P. Zhang , Z. Su , C. Dou , B. Z. Tang , Anal. Chem. 2019, 91, 3467.
|
[37] |
H. Lu , Q. Wang , L. Gai , Z. Li , Y. Deng , X. Xiao , G. Lai , Z. Shen , Chem. Eur. J. 2012, 18, 7852.
|
[38] |
C.-L. Liu , Y. Chen , D. P. Shelar , C. Li , G. Cheng , W.-F. Fu , J. Mater. Chem. C 2014, 2, 5421.
|
[39] |
L. Yao , S. Zhang , R. Wang , W. Li , F. Shen , B. Yang , Y. Ma , Angew. Chem. Int. Ed. 2014, 53, 2119.
|
[40] |
J. Fan , Y. Zhang , K. Zhang , J. Liu , G. Jiang , F. Li , L. Lin , C. K. Wang , J. Mater. Chem. C. 2019, 7, 8874.
|
[41] |
X. Cai , S.-J. Su , Adv. Funct. Mater. 2018, 28, 1802558.
|
[42] |
X.-F. Zhang , J. Zhu , J. Lumin. 2019, 212, 286.
|
[43] |
X. Lv , M. Sun , L. Xu , R. Wang , H. Zhou , Y. Pan , S. Zhang , Q. Sun , S. Xue , W. Yang , Chem. Sci. 2020, 11, 5058.
|
[44] |
S.-Y. Yang , Y.-L. Zhang , F.-C. Kong , Y.-J. Yu , H.-C. Li , S.-N. Zou , A. Khan , Z.-Q. Jiang , L.-S. Liao , Chem. Eng. J. 2021, 418, 129366.
|
[45] |
J. Hankache , O. S. Wenger , Chem. Eur. J. 2012, 18, 6443.
|
[46] |
L. Chen , S. Zhang , H. Li , R. Chen , L. Jin , K. Yuan , H. Li , P. Lu , B. Yang , W. Huang , J. Phys. Chem. Lett. 2018, 9, 5240.
|
[47] |
W.-J. Shi , M. E. El-Khouly , K. Ohkubo , S. Fukuzumi , D. K. Ng , Chem. Eur. J. 2013, 19, 11332.
|
/
〈 | 〉 |