In situ Hydrothermal Oxidation of Ternary FeCoNi Alloy Electrode for Overall Water Splitting

Yuwei Chen, Lixia Yang, Chao Li, Yuqiu Wu, Xiao Lv, Hairen Wang, Jun’e Qu

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12590. DOI: 10.1002/eem2.12590
RESEARCH ARTICLE

In situ Hydrothermal Oxidation of Ternary FeCoNi Alloy Electrode for Overall Water Splitting

Author information +
History +

Abstract

Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development. In this article, a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium. It shows that the matrix alloy with the atom ratio 4:3:3 of Fe:Co:Ni can obtain the best catalytic performance when hydrothermally treated at 180℃ for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide. The as-prepared Fe0.4Co0.3Ni0.3-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm-2 for alkaline OER and HER processes, respectively. The overall water splitting at electrolysis current density of 10 mA cm-2 can be stably delivered at a low cell voltage of 1.62 V. These characteristics including the large specific surface area, the high surface nickel content, the abundant catalyst species, the balanced distribution between bivalent and trivalent metal ions, and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe0.4Co0.3Ni0.3-1.8 electrode, which can act as a possible replacement for expensive noble metal-based materials.

Keywords

alkaline water electrolysis / bifunctional electrocatalyst / FeCoNi alloy / hydrothermal oxidation / in-situ growing

Cite this article

Download citation ▾
Yuwei Chen, Lixia Yang, Chao Li, Yuqiu Wu, Xiao Lv, Hairen Wang, Jun’e Qu. In situ Hydrothermal Oxidation of Ternary FeCoNi Alloy Electrode for Overall Water Splitting. Energy & Environmental Materials, 2024, 7(2): 12590 https://doi.org/10.1002/eem2.12590

References

[1]
J. A. Okolie , B. R. Patra , A. Mukherjee , S. Nanda , A. K. Dalai , J. A. Kozinski , Int. J. Hydrogen Energy 2021, 46, 8885.
[2]
E. I. Epelle , K. S. Desongu , W. Obande , A. A. Adeleke , P. P. Ikubanni , J. A. Okolie , B. Gunes , Int. J. Hydrogen Energy 2022, 47, 20398.
[3]
P. Nikolaidis , A. Poullikkas , Renew. Sustain. Energy Rev. 2017, 67, 597.
[4]
F. Safari , I. Dincer , Energ. Conver. Manage. 2020, 205, 112182.
[5]
J. I. Levene , M. K. Mann , R. M. Margolis , A. Milbrandt , Sol. Energy 2007, 81, 773.
[6]
S. Anwar , F. Khan , Y. H. Zhang , A. Djire , Int. J. Hydrogen Energy 2021, 46, 32284.
[7]
J. Yu , Y. W. Dai , Q. J. He , D. Q. Zhao , Z. P. Shao , M. Ni , Mater. Rep. Energy 2021, 1, 100024.
[8]
H. Xu , H. Y. Shang , C. Wang , Y. K. Du , Coord. Chem. Rev. 2020, 418, 213374.
[9]
H. Y. Jin , S. Sultan , M. Ha , J. N. Tiwari , M. G. Kim , K. S. Kim , Adv. Funct. Mater. 2020, 30, 2000531.
[10]
J. N. Tiwari , N. K. Dang , S. Sultan , P. Thangavel , H. Y. Jeong , K. S. Kim , Nat. Sustain. 2020, 3, 556.
[11]
Y. F. Zhao , S. Q. Chen , B. Sun , D. W. Su , X. D. Huang , H. Liu , Y. M. Yan , K. N. Su , G. X. Wang , Sci. Rep. 2015, 5, 7629.
[12]
L. Gao , C. Tang , J. Liu , L. He , H. Wang , Z. Ke , W. Li , C. Jiang , D. He , L. Cheng , Energy Environ. Mater. 2021, 4, 392.
[13]
A. Loh , X. H. Li , O. O. Taiwo , F. Tariq , N. P. Brandon , P. C. Wang , K. Xu , B. G. Wang , Int. J. Hydrogen Energy 2020, 45, 24232.
[14]
M. Gong , Y. Li , H. Wang , Y. Liang , J. Z. Wu , J. Zhou , J. Wang , T. Regier , F. Wei , H. Dai , J. Am. Chem. Soc. 2013, 135, 8452.
[15]
Y. Xu , X. Jiang , G. Shao , H. Xiang , S. Si , X. Li , T. S. Hu , G. Hong , S. Dong , H. Li , Energy Environ. Mater. 2021, 4, 117.
[16]
M. A. Ehsan , A. Khan , M. N. Zafar , U. A. Akber , A. S. Hakeem , M. F. Naza , Int. J. Hydrogen Energy 2020, 45, 24232.
[17]
T. T. Liang , S. Lenus , Y. D. Liu , Y. Chen , T. Sakthivel , F. Y. Chen , F. Ma , Z. F. Dai , Energy Environ. Mater. 2022,
CrossRef Google scholar
[18]
G. Mei , H. F. Liang , B. B. Wei , H. H. Shi , F. Wang , M. X. Xu , Z. C. Wang , Electrochim. Acta 2018, 290, 82.
[19]
J. W. Zhu , R. H. Lu , W. J. Shi , L. Gong , D. Chen , P. Y. Wang , L. Chen , J. S. Wu , S. C. Mu , Y. Zhao , Energy Environ. Mater. 2022,
CrossRef Google scholar
[20]
L. Q. Wu , D. D. Shi , S. M. Yan , W. Qiao , W. Zhong , Y. W. Du , Int. J. Hydrogen Energy 2021, 4, 2086.
[21]
S. L. Lu , J. J. Wu , H. Y. Hu , X. X. Pan , Z. B. Hu , H. N. Li , H. Zhu , J. Colloid Interface Sci. 2021, 585, 258.
[22]
M. J. Kim , S. H. Kim , D. H. Song , S. K. Oh , K. J. Chang , E. A. Cho , Appl. Catal. Environ. 2018, 227, 340.
[23]
S. Shanmugama , A. Sivanantham , M. Matsunag , U. Simonc , T. Osaka , Electrochim. Acta 2019, 297, 749.
[24]
I. Amorim , J. Y. Xu , N. Zhang , D. H. Xiong , S. M. Thalluri , R. Thomas , J. P. S. Sousa , A. Araujo , H. Li , L. F. Liu , Catal. Today 2020, 358, 196.
[25]
X. Zou , W. Zhang , X. Y. Zhou , K. X. Song , X. Ge , W. T. Zheng , J. Energy Chem. 2022, 72, 509.
[26]
A. Maalavan , M. Jahangir , U. Siddesh , N. Manashi , Electrochem. Commun. 2018, 86, 121.
[27]
H. Schäfer , D. M. Chevrier , K. Kuepper , P. Zhang , J. Wollschlaeger , D. Daum , M. Steinhart , C. Heß , U. Krupp , K. Müller-Buschbaum , J. Stangl , M. Schmidt , Energy Environ. Sci. 2016, 9, 2609.
[28]
H. Schäfer , K. Küpper , J. Wollschläger , N. Kashaev , J. Hardege , L. Walder , S. M. Beladi-Mousavi , B. Hartmann-Azanza , M. Steinhart , S. Sadaf , F. Dorn , ChemSusChem 2015, 8, 3099.
[29]
M. J. K. Lodhi , K. M. Deen , W. Haider , Int. J. Hydrogen Energy 2019, 44, 24698.
[30]
N. Todoroki , T. Wadayama , Electrochem. Commun. 2021, 122, 106902.
[31]
U. K. Sultana , J. F. S. Fernando , A. P. O’Mullane , Sustain. Mater. Technol. 2020, 25, e00177.
[32]
H. Schäfer , S. M. Beladi-Mousavi , L. Walder , J. Wollschläger , O. Kuschel , S. Ichilmann , S. Sadaf , M. Steinhart , K. Küpper , L. Schneider , ACS Catal. 2015, 5, 2671.
[33]
M. Lee , H. S. Jeon , S. Y. Lee , H. Kim , S. J. Sim , Y. J. Hwang , B. K. Min , J. Mater. Chem. A 2017, 5, 19210.
[34]
H. Schäfer , D. M. Chevrier , P. Zhang , J. Stangl , K. Müller-Buschbaumm , J. D. Hardege , K. Kuepper , J. Wollschläger , U. Krupp , S. Dühnen , Adv. Funct. Mater. 2016, 26, 6402.
[35]
Z. Li , L. Cai , M. Song , Y. C. Shen , X. Wang , J. Li , J. Wang , P. Wang , L. Tian , Electrochim. Acta 2020, 339, 135886.
[36]
J. Y. Xia , K. Huang , Z. X. Yao , B. W. Zhang , S. Y. Li , Z. B. Chen , F. Wu , J. S. Wu , Y. Z. Huang , J. Alloys Compd. 2021, 891, 161934.
[37]
Y. Yang , Y. H. Song , S. D. Mo , M. Y. Liu , Chem. Eng. J. 2021, 417, 127934.
[38]
S. Yan , M. X. Zhong , C. Wang , X. F. Lu , Chem. Eng. J. 2022, 430, 132955.
[39]
J. Fan , Z. Chen , H. Shi , G. Zhao , Chem. Commun. 2016, 52, 4290.
[40]
M. Nishimoto , Z. T. Xiong , S. Kitano , Y. Aoki , H. Habazaki , Electrochim. Acta 2022, 427, 140875.
[41]
G. F. Li , L. Anderson , Y. N. Chen , M. Pan , Sustainable Energy Fuels 2018, 2, 237.
[42]
F. Foroughi , C. I. Bernacker , L. Rontzsch , B. G. Pollet , Ultrason. Sonochem. 2022, 84, 105979.
[43]
C. Kjartansd ottir , M. Caspersen , S. Egelund , P. Møller , Electrochim. Acta 2014, 142, 324.
[44]
J. E. Qu , C. Q. Yu , C. H. Nie , H. R. Wang , Z. Y. Cao , Y. Li , X. Y. Wang , J. Mater. Sci. 2021, 56, 854.
[45]
L. Lv , Z. S. Li , Y. J. Ruan , Y. X. Chang , X. Ao , J. G. Li , Z. X. Yang , C. D. Wang , Electrochim. Acta 2018, 286, 172.
[46]
C. M. Abreu , M. J. Crist obal , R. Losada , X. R. N ovoa , G. Pena , M. C. P erez , Electrochim. Acta 2006, 51, 2991.
[47]
H. Luo , X. G. Li , C. F. Dong , K. Xiao , X. Q. Cheng , J. Phys. Chem. Solid 2013, 74, 691.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/